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In this article we begin a study of the relationship between separation of variables and the conformal 
symmetry group of the wave equation -V" - A3-V = 0 in space-time. In this first article we make a detailed 
study of separation of variables for the Lliplace operator on the one and two sheeted hyperboloids in 
Minkowski space. We then restrict ourselves to homogeneous solutions of the wave equation and the 
Lorentz subgroup SO(3,1) of the conformal group SO(4,2). We study the various separable bases by using 
the methods of integral geometry as developed by Gel'fand and Graev. In most cases we give the spectral 
analysis for these bases, and a number of new bases are developed in detail. Many of the special function 
identities derived appear to be new. This preliminary study is of importance when we subsequently study 
models of the Hilbert space structure for solutions of the wave equation and the Klein-Gordon equation 
-V,,-A 3-V=A-V. 

INTRODUCTION 

In this article we continuel - 3 the investigation of the con
nection between separation of variables for the principal 
equations of mathematical physics and the associated 
symmetry groups of such equations. The object of our 
study in this current series of articles is the wave equation 
in space-time, 

IfItt - ,131f1 = O. 

The motivation for such a study stems from the inherent 
physical importance of this equation as well as its in
trinsic mathematical interest. In this article we initiate the 
study with a detailed investigation of separation of vari
ables for the Laplace operator on the one and two sheeted 
hyperboloids [X, X] = -I and [X, X) = 1, respectively. 
Here X = (t, x, y, z) = (xo, Xl, X2, Xa) and [X, X] = t2 -

X2 - y2 - z2 is the usual Lorentz space-time scalar 
product. In doing this we are also concerned with the 
corresponding problem on the cone [X, X] = O. Here 
we are dealing only with the Lorentz subgroup of the 
SO(4, 2) symmetry group of (*). A detailed stUdy of these 
manifolds is however of importance when the full symme
try group is utilized to study separation of variables for 
(*). This will be shown in a subsequent article where we 
introduce a Hilbert space structure for solutions of (*) and 
discuss various equivalent representations of this structure. 
The problem of separation of variable for the Laplace 
operator on the upper sheet of the two sheeted hyperboloid 
has been investigated by 0levski4 who found 34 coordi
nate systems. In this article we perform harmonic analysis 
on the space L2(H+) of square integrable functions on the 
upper sheet H+ of the two sheeted hyperboloid for the ma
jority of coordinate systems given by Olevski. In a num
ber of cases we give the harmonic analysis for coordinate 
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systems which are representative of a particular subclass 
of coordinates. We specifically exclude the treatment of 
elliptic coordinates which requires the solution of multi
parameter eigenvalue problems. This analysis is performed 
using the methods of integral geometry as developed by 
Gel'fand, Graev, and Vilenkin. The resulting spectral 
problems are then reduced to spectral problems on the 
cone [X, X] = O. The contents of this article are arranged 
as follows: In Sec. I we present all the mathematical pre
liminaries and notations necessary for subsequent sections. 
These include the formulas for harmonic analysis on 
L2(H+) and the space L2(Hs) of square integrable func
tions on the single sheet hyperboloid Hs. In Sec. 2 we give 
explicitly the 34 coordinate systems, due to Olevski, to
gether with the pair of operators which specify each system, 
expressed in terms of the generators of the Lorentz group. 
In Sec. 3 we compute the spectral decompositions cor
responding to the various coordinate systems. In the cases 
where this is already known the result is merely listed. Sec
tion 4 is devoted to a presentation of the appropriate basis 
functions on V(H+) and some comments on overlap 
functions. Finally, in Sec. 5 we compute various expansions 
onV(Hs). 

1. HARMONIC ANALYSIS AND THE LORENTZ 
GROUP 

The homogeneous Lorentz group SO(3, I) consists of 
those proper real linear transformations which leave [X, 
Xl invariant. The Lie algebra of SO(3, 1) is six-dimen
sional, and is generated by the rotation generators 

Ml = yaz - za1l, 

M2 = xaz - zax, 

Ma = xay - yax , 
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and the Lorentz transformation generators 

K1 = tox + XOt, 

K2 = tOy + YOt, 

K3 = toz + zi1t. 

The communtation relations are 

[M~, Mjl = etjkMk, 

[Mi, Kj] = eijkKk, 

[Kt, Kj] = - etjkKk. 

(1.2) 

(1.3) 

The group SO(3, 1) has two Casimir operators A = 
M2 - K2 and A' = M.K. The irreducible representations 
of the identity component of SO(3, 1) are labelled by two 
numbers. (jo, (1), wherejo is an integer or half-integer and 
(1 is in general complex. If "'10a transforms according to 
the irreducible representation (jo, (1) then 

A"'10a= - [j6 + a(a + 2)] "'10(1' 

A''''10a = - jo(a + 1) "'10a· 
(1.4) 

If the irreducible representation is in addition unitary then 
a must have the one of the forms: 

1. a = -1 + is, s E R. This is the principal series. 

2. - 1 <; a <; 0, a E Rand jo = 0, ± 1, . . 

This is the complementary series. 

Further details concerning the representation theory of 
the Lorentz group can be found in Naimark5 and Gel'fand 
et af.6 We now give the basic formulas necessary for the 
harmonic analysis of functions defined on the spaces 
L2(H+) and L2(Hs) mentioned in the introduction. These 
formulas are due to Gel'fand et aU 

A. Harmonic analysis on L2(H+) 

The space £2(H+) consists of functions I(X) defined on 
the upper sheet of the hyperboloid [X, X] = 1, t ~ 1, 
satisfying 

f I/(X)1 2 dX < 00, (l.5) 

where dX = dxdydz/(1 + x2 + y2 + z2)1I2. The harmonic 
analysis of a function f(X) E £2(H+) requires only the 
unitary irreducible representations a = - I + is (0 < 
s < 00), jo = 0 corresponding to the principal series. 

It is readily verified from the coordinate representation 
of the generators that A' = o. The formulas which yield 
the harmonic analysis of I(X) are 

leX) = (4~)3 f~ S2 ds f r F(Y; s) [X, y]-tB-l dw, 

(1.6) 
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where r is any contour on the [Y, Y] = ° cone which in
tersects each generator of the cone once and dw is the dif
ferential form defined by dY = dPdw where P( Y) = 1 is 
the equation of rand dY = dYldy2dY3/YO is the invariant 
measure on the cone. Here 

F(Y, s) = f I(X)[X, YJi 8-1 dX. (I. 7) 

The function f(X) is then decomposed into components 
which transform according to the unitary irreducible rep
resentations a = - 1 + is, 

0< s < 00, jo = o. 

B. Harmonic analysis on L2(Hs) 

The space L2(Hs) consists of functions f(X) defined on 
the single sheet hyperboloid (X, X] = -1 and satisfying 

I(X) = I( - X), 

flf(X)1 2 dX< 00, 

(1.8a) 

(1.8b) 

where dX = dxdydz/(x2 + y2 + z2 - 1)112. The harmonic 
analysis of a functionf(X) E L2(Hs) requires the unitary 
irreducible representations 

(i) a = -1 + is, (0 < s < 00), jo = 0, and 

(ii) a = - I, jo = 2n, n = 1, 2, 

The reason we choose the condition (1.8a) is that the 
harmonic analysis of a function satisfying this symmetry 
condition has been studied in detail by Gel'fand et aU 
An example of an expansion which does not exhibit the 
property (l.8a) has been given by Zmuidzinas.8 We should 
also mention the work of Limic et aJ.9 who have examined 
the general problem of the expansion of square integrable 
functions defined on the transitivity surfaces of SO(p, q) 
in the canonical reduction. The expansion formulas for 
£2(Hs) are 

f(X) = --'- f"" S2 ds I F( Y; s) 1 [X, Y) 1-/S-1 dw 
2(471")3 0 r 

+ ~2 f:. nf F(Y,B;2n)e2in9 J([X, Y])dw, 
"n=1 r 

with wand r as in (1.6). This expansion can be inverted 
via the formulas 

F(Y;s) = f f(X) 1 [X, Y)liS-1dX, 

F(Y, B; 2n) = f f(X)e- 2in9 J([X, Y)) dX. 

In both these formulas B is a four vector satisfying 

[B, B) = -I, [B, Y] = [Y, Y) = O. 

(1.1 0) 

The first component of B is zero. The angle e is given by the 
relation cos e = [X, B). For further details concerning these 
formulas we refer the reader to Gel'fand et aU 
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2. SEPARABLE COORDINATE SYSTEMS FOR 
11'1' = - er(er + 2) ON THE UPPER SHEET 
OF [X, X]=1 

We now study the differential equation 

(M2 - K2) IjI(X) = -a(a + 2) IjI(X), (+) 

where X ranges over the upper sheet of [X, Xl = 1. As 
follows from (1.6), an arbitrary f E £2(H+) can be de
composed as an integral over solutions of ( +). Further
more, ( + ) arises when one looks for solutions of (* ) which 
are homogeneous in x, y, z, t. 

Equation ( + ) has been studied by Olevski4 who showed 
that it admitted exactly 34 separable orthogonal coordinate 
systems. Here we give Olevski's results in a somewhat more 
explicit form. We also give for the first time a characteri
zation of each separable system in terms of a pair of com
muting second-order elements Ll, L2 in the enveloping 
algebra of the Lie algebra of SO(3, 1). The corresponding 
separated solutions are eigenfunctions of Ll and L2 and the 
eigenvalues are the separation constants. (Smorodinski 
and TugovlO have computed Ll and L2 earlier but only in 
the form of differential operators.) For each set of separ
able coordinates {p, v, Il} we list the metric 

ds2 = HI dp2 + H~ dv 2 + H§ dll2, Hi = Ht(p, v, 11). 

In terms of the metric coefficients, ( + ) becomes 

1 [(H2H3) (H1H3) H~H2H3 ap &apljl + a. ~a.1jI 

+ a~(Hk~~a~IjI)] = -a(a + 2)1jI. 

Setting IjI = A1(p)A2(V)A3(Il) in this equation, one can 
easily derive the ordinary differential equations satisfied 
by the separated solutions Ai. 

1. ds2 = dp2 + cosh2p dv 2 + sinh2p dll2, 

t = coshp coshv, x = sinhp cosll, (2.1) 

y = sinhp Sinll, Z = coshp sinhv 

-oo<p<oo, -oo<v<oo, 0~Il<2n:. 

The operators are 

Ll = K~, Lz = M~. 

2. ds2 = dp2 + e-2p(d'.)2 + dll2), 

t = HeP + (l + v2 + 112) e-p], x = e-Pv, (2.2) 

y = e-PIl, Z = t reP + (-1 + v2 + 112) e-p], 

- 00 < p, v, 11 < 00. 

The operators are 

Ll = (Kl + M2)2, L2 = (K2 - Ml)2. 

3. ds2 = dp2 + sinh2p{sn2(v, k) - sn2(Il, k»(dv2 - dll2), 

t = coshp, x = (Ilk) sinhp dn(v, k) dn(Il, k), 

y = Uk/k') sinhp cn(v, k) cn(v, k), 

Z = k sinhp sn(v, k) sn(Il, k), (2.3) 
O<k<l, k'=(I_k2)1I2, 

-00 < p < 00, '.) E [-2K, 2K], 
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" E [- K, - K + 2iK']. 

The operators are 

Ll = Mi + M~ + M§, Lz = Mi + k2M~. 
4. ds2 = dp2 + cosh2p (sn2(v, k) 

- snZ(", k» (dv2 - d,,2), 

t = ik coshp sn(v, k) sn(", k), 

x = (k/k') coshp cn(v, k) cn(", k), (2.4) 

y = (ilk') coshp dn(v, k), dn(", k), Z = sinhp, 

-00 < p< 00, v E [K,K + 2iK], 

11 E [iK', iK' + 2K]. 

The operators are 

Ll = Ki + K~ - M§, L2 = k 2M§ + k'2K~. 

5. Differential form as for system 4 

t = (iklk') coshp cn(v, k) cn{", k), 

x = eik coshp sn(v, k) sn(Il, k), 

y = e'(ilk') coshp dn(v, k) dn(", k), (2.5) 

Z = sinhp, e, e' = ±, 

- 00 < p < 00, v E [iK', iK' + 2K], "E [0, 2iK']. 

The operators are 

Ll = KI + K~ - M§, L2 = K~ - k 2M§. 

6. ds2 = dpz + t (v - ,,) cosh2p [(V _ a~~: _ b)v 

d,,2 ] 
(" - a) (" - b)" . 

The coordinates are given by the equations 

(t + iy)2 = 2{v - a) (" - a) cosh2p 
a(a - b) , (2.6) 

x = ..; -v"lab coshp, Z = sinhp, 

where a = b* = a + ifJ, a, fJ E R, - 00 < v < 0, 

° < 11 < 00. The operators are 

Ll = Kr + K~ - M§, 

L2 = fJ{M3K2 + K2M3) + aKi. 

7. ds2 = dp2 + cosh2p (_1- - _1_) (dv2 + d,,2) 
cos2v cosh2" , 

1 h (COSh'! cOSV ) 
t = 2" cos P cOSv + cosh" , 

x = coshp tanh" tanv, (2.7) 

y = coshp [cosh) COSv 

Z = sinhp, 

1_ (~OSh'! + (;osv )] 
2 cosv cosh,,' 

-oo<p<oo, -00<,,<00, 0~v<2n:. 

The operators are 

Ll = Ki + K~ - M!, 

Lz = Ki + K~ + MN - M3K2 - K2M3. 

8. ds2 = dp2 + cosh2p (-:~I. - +-c-L;-) (d,,2 + dv2) 
smh21l sm2 v ' 
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[
1 1 (Sinh" sinv )] 

t = coshp sinh" sinv + 2 sinv - sinh" , 

x = coshp cotht7 cotv, 

, h ( sinv Sinh,,) y - -,,-cos p -- ---
- 2 sinh" sinv' 

(2.8) 

z = sinhp, -00 <p < 00, 

-00<,,<00, o ~ v < 2n. 

The operators are 

L1 = Ki + K~ - M§, 

L2 = - Ki + K~ + Mi - MaK2 - K2MS. 

9. ds2 = dp2 + COSh2p (:2 + ~2) (dv2 + d,,2), 

t = coshp [(v
2 + ,,2)2 + 4], x = ~ coshp (!L _ ~), 

8v" 2 v" 

[-(v2 + ,,2)2 + 4] 
y = coshp 8 ,z = sinhp, (2.9) 

V" 
- 00 < p < 00, - 00 < v < 00, - 00 < " < 00. 

The operators are 

L1 = Ki + K~ - M§, 

L2 = K1K2 + K2K1 - K1Ma - MaK1. 

10. ds2 = dp2 + sinh2p (dv2 + sin2v d,,2) 

t = coshp, x = sinhp sinv COS", 

z = sinhp cosv, 

(2.l0) 

y = sinhp sinv sin", 

- 00 < p < 00, o ~ v < n, o ~,,< 2n. 

The operators are 

L1 = Mr + M~ + M§, L2 = M§. 

11. ds2 = dp2 + coshzp (dv2 + sinh2v d,,2), 

t = coshp coshv, x = coshp sinhv COS", (2.11) 

y = coshp sinhv sin", z = sinhp, 

-oo<p<oo, - 00 < v < 00, 0 ~" < 2n. 

The operators are 

L1 = Kr + K~ - M§, L2 = M§. 

12. ds2 = dp2 + cosh2p (dv2 + cosh2v d"Z), 

t = coshp coshv cosh", 

x = coshp coshv sinh", 

y = coshp sinhv, z = sinhp, 

- 00 < v, p, 1] < 00. 

The operators are 

L1 = Ki + K~ - M§, L2 = Ki· 

13. ds2 = dp2 + cosh2p(dv2 + e-2v d,,2), 

t = t coshp [ev + (1 + ,,2) e-v
], 

(2.12) 

(2.13) 

y = t coshp [ev + (- 1 + ,,2) e-v], z = sinhp, 

- 00 < v, p, " < 00. 
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The operators are 

L1 = Ki + K~ - M5, L2 = (K1 + Ma)2. 

14. ds2 = dp2 + e-2p(dv2 + v2 d,,2), 

y = e-P v sin", z = t[eP + (-1 + v2) e-p], (2.14) 

- 00 < p < 00, - 00 < v < 00, 0 ~ " < 2n. 

The operators are 

L1 = (K1 + M2)2 + (K2 - M1)2, Lz = Mi. 

15. ds2 = dp2 + e-2p(cosh2v - cos 2,,) (dv 2 + d,,2), 

t = t[eP + (1 + cosh2v - sin211) e-p], 

x = e-P coshv cosl1, y = e-P sinhv sin", (2.15) 

z = HeP + (-1 + cosh2v - sin211)e-P], 

- 00 < p < 00, - 00 < v < 00, 0 ~ " < 2n. 

The operators are 

L1 = (K1 + M2)2 + (K2 - M1)2, 

L2 = Mi + (K1 + M2)2. 

16. ds2 = dp2 + e-2p(112 + v2) (d11 2 + dv2), 

t = t[eP + (1 + t(11 2 + v2)2)e-P], 

Xl = t e-p (1]2 - v2), y = e-P "v, 

Z = t[eP + (-1 + tcl12 + v2)2) e-P], 

(2.16) 

- 00 < p < 00, - 00 < " < 00, - 00 < v < 00. 

The operators are 

L1 = (K1 + M2)2 + (K2 - M1)2, 

L2 = M3(K1 + M2) + (K1 + M2)M3. 

17. ds2 = (sn2(p, k) - sn2(v, k»(dp2 - dv2) 

+ (k 2Ik'2) cn2(p, k) cn2(v, k) d112, 

t = k sn(p, k) sn(v, k), 

x = (kjk') cn(p, k) cn(v, k) cOSI1, 

y = (klk') cn(p, k) cn(v, k) sinl1, 

z = (ilk') dn(p, k) dn(v, k), 

p EO [K, K + 2iK'], v EO [iK', iK' + 2K], 

o ~ 11 < 2n. 

The operators are 

(2.17) 

L1 = Mi, L2 = Kr + K~ + k 2K§ - k'2Mi· 

18. ds2 = (sn2(p, k) - sn2(v, k» (dp2 - dv2) 

- (1/k'2) dn2(p, k) dn2(v, k) df/2, 

t = k sn(p, k) sn(v, k), 

x = (ilk') dn(p, k) dn(v, k) cOSf/, 

y = (ilk') dn(p, k) dn(v, k) sinf/, 

z = (klk') cn(p, k) cn(v, k), 

p EO [K, K + 2iK'], v EO [iK', iK' + 2K], 

o ~,,< 2n. 

(2.18) 

The operators are 

L1 = M§, L2 = Ki + k 2(Ki + Kn + k'2 M§. 
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19. ds2 = (sn2(p, k) - sn2(v, k» (dp2 - dv2) 

+ k 2 sn2(p, k) sn2(v, k) d,,2, 

t = k sn(p, k) sn(v, k) cosh", 

x = k sn(p, k) sn(v, k) sinh", 

y = (klk') cn(p, k) cn(v, k), 

z = (ilk') dn(p, k) dn(v, k), 

p E [K, K + 2iK'], v E [iK', iK' + 2K], 

-00<,,<00. 
The operators are 

Ll = Ki, 

(2.19) 

20. 

L2 = K~ - M~ + k2(K~ - Mn - (1 + k 2) Ky. 

Differential form the same as in system 17 with 

t = (iklk') cn(p, k) cn(v, k) cosh", 

x = (iklk') cn(p, k) cn(v, k) sinh", 

y = (ilk') dn(p, k) dn(v, k), 

z = ik sn(p, k) sn(v, k), 

p E [iK', iK' + 2K], 

-00 <" < 00. 
The operators are 

v E [-iK', iK'] , 

(2.20) 

Ll = Ky, L2 = K~ - M~ + k 2(Ki - Mi). 

21. Differential form the same as in system 18 with 

t = (iklk') cn(p, k) cn(v, k), 

x = (ilk') dn(p, k) dn(v, k) COS", 

Y = (ilk') dn(p, k) dn(v, k) sin", 

z = ik sn(p, k) sn(v, k), 

(2.21) 

P E [iK', iK' + 2K], 

The operators are 

v E [0, 2iK'], 0.:;;;;" < 2n. 

Ll = M~, L2 == K~ + M~ - k2(M~ + Mi). 

[ dp2 

dv
2 

] d 2 
- (v - a)(v - b)v - pv " . 

The coordinates are given by the equations 

(t + iZ)2 == 2(p - a) (v - a)la(a - b), 

x = (..}=p:;f(ib) COS", 

y = (.j - pvlab) sin", 
where 

(2.22) 

a = b* = a + iP, a, PER, - 00 < v < 0, 

0< p < 00, 
The operators are 

0<" < 2n. 

Ll = M~, 

L2 = a(Ky + K~ - My - M~) - P(KIM2 + M2Kl 

+ K2Ml + MIK2) - 2aM~. 

23 ds2 = (_1 ___ 1_) (dp2 + dv2) 
. cos2p cosh2v 

1 d 2 
+ cos2p cosh2v ", 
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t _ ~(COShv + COSP ) + ,,2 , 
- 2 cosp cosh v 2coshv cosp 

x == " ,y == tanhv tanp, 
coshv cosp 

(2.23) 

z _ [ I _ ~(COShv + cosp )]. 
- coshv cosp 2 cosp coshv 

,,2 
- 2coshv cosp' 

0<p<2n, -oo<v<oo, -00<,,<00. 
The operators are 

Ll = (Kl + M2)2, 

L2 = 2Ky + K~ + K~ + My - KIM2 - M2Kl 

- K2Ml - MIK2. 

24. ds2 == (~h2 + . 12p) (dp2 + dv2) sm v sm 

1 d 2 
+ sinh2v sin2p ", 

_ [ I + ~(Si~hv _ ~inp)] + . ,,2. , 
t - sinhv sinp 2 smp smhv 2smhv smp 

x == sinhv sinp' y = cotp cothv, 

I (Sinhv Sinp ) ,,2 
z = 2 sinp - sinhv - sinhv sinp' 

(2.24) 

o < p < 2n, - 00 < v < 00, - 00 < " < 00. 
The operators are 

Ll = (Kl + M2)2, 

L2 = 2M~ + My + K~ - Ki - K2Ml - MIK2 

- KIM2 - M2Kl. 

25. ds2 = (-12- - ~h2 ) (dp2 + dv2) 
cos P cos v 

t = ~ (COShv + COSP ), + tan2p tanh2 v d,,2, 2 cosp coshv 

x = tanp tanhv COS", y = tanp tanhv sin", 

I I (COShv cosp ) (2.25) 
z == coshv cosp - -2 cosp + coshv ' 

o < p < 2n, - 00 < v < 00, 0 < " < 2n. 
The operators are 

Ll = M~, L2 = M~ + My + Ky + K~ + K~ 
- M2Kl - KIM2 - MIK2 - K2Ml. 

26 dS2 = (-. _1 _ + _._1_) (dv2 + dp2) 
. smh2v sm2p 

+ cot2p coth2v d,,2, 

1 I (Sinhv Sinp ) 
t == sinhv sinp + 2 sinp - Sfnhv ' (2.26) 

x = cotp cothv COS", 

y = cotp cothv siIl17, z = ~(Si~hv _ ~inp), 
2 smp smhv 

0< p < 2n, - 00 < v < 00, 0 < ,,< 2n. 
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The operators are 

Ll = M~, 
~=~+~+~+~-~+~~+~~ 

+ M1K2 + K2Ml. 

_ 1 ( v P) y-2p----:;' 

The operators are 

Ll = (Kl + M 2)2, 

x =!1 
pv' 

(2.27) 

L2 = M3(Kl + M2) + (Kl + M2)M3 + K3(K2 - Ml) 

+ (K2 - Ml)K3. 

28. ds = }[(P - 17) (p - v) d 2 + (v - p)(v - 'I) d 2 
4 pep) p P(v) v 

+ (v - p)(v - 'I) d 2J 
P('1) '1, 

P(z) = (z - a)(z - b)(z - l)z, 

12 = pv'1 x 2 = (p - I)(v - 1)('1 - I) 
ab' (a - 1)(b - I) 

y2 = (p - b)(v - b)('1 - b) 
(a - b)(b - I)b 

(2.28) 

z2 = (p - a)(v - a)('1 - a) 
(a - b)(a - I)a 

o < 1 < 'I < b < v < a < p. 

The operators are 

Ll = ab Ki + a K2 + b K§, 

L2 = (a + b)Ki + (a + 1)K2 + (b + I)K§ 

- a M~ - b M~ - Mi. 

29. Differential form as in system 28 with 

2 __ (p - I)(v=- 1)('1 -=-!2 
1 - (a - 1)(b - I) , 

x 2 = _ pv'1 
ab' 

2 ___ (~_- b)(v - b)('1 - b) 
y - (a - b)(b - I) , (2.29) 

z2 = (p - a)(v - a)('1 - a) 
(a - b)(a - I)a ' 

'I < 0 < 1 < b < v < a < p. 

The operators are 

Ll = ab Ki - a M~ - b M~, 

L2 = (a + b)Ki - (a + I)M~ - (b + I)M~ 
+ a K~ + b K~ - Mi. 

30. Differential form as in system 28 with 

a = b* = 0 + ifJ, 0, fJ EO H, 

( + '/)2 = 2(p - a)(v - a) ('1 - a) 
x I (a _ b)(b - l)b ' (2.30) 
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2 _ (p - 1)(v - 1)('1 - 1) 
Y - (a - 1)(b - 1)' 

'I < 0 < v < 1 < p. 

The operators are 

Z2 = _ pv'1 
ab' 

Ll = - (02 + fJ2)Mi + o(K§ - MD - fJ(K3M2 + M2K3) , 

L2 = - 20Mi + (0 + I)(K§ - Mn + o(K~ - M§) 

+ fJ(K2M 3 + M3K2 - M2K3 - K3M2). 

31. Differential form as in system 28 with 

P(z) = (z - a) (z - I)Z2, 

(t + x)2 = pV'1/a, 

(t 2 - x 2) = (l/a2) [a(pv + P'1 + v'1) - (a + I) pv'1], 

y2 = - (p - I)(v - 1)('1 - I)/(a - 1), (2.31) 

z2 = (p - a)(v - a) ('1 - a)/a2(a - I), 

o < 'I < 1 < v < a < p. 

The operators are 

Ll = (K3 + M2)2 - a(K2 + M3)2 + a Ki, 

L2 = (a + I)Ki + K§ - M~ + a(M§ - KD 

+ (K2 + M3)2 + (K3 + M2)2. 

32. Differential form as in system 28 with 

(t + X)2 = - pV'1/a, 

(t 2 - x 2) = (l/a2) [a(pv + V'1 + P'1) - (a + I) pV17], 

y2 = - (p - 1)(v - 1)('1 - I)/(a - I), (2.32) 

z2 = (p - a)(v - a) ('1 - a)/a2(a - 1), 

-'I < 0 < 1 < v < a < p. 

The operators are 

Ll = - (K3 + M2)2 + a(K2 + M3)2 + a Kr, 

L2 = (a + I) Ki + M2 - K§ + a(K~ - M§) 

- (K2 + M3)2 - (K3 + M2)2. 

33. Differential form as in system 28 with 

P(z) = (z - a)(z + 1) Z2, 

(t + X)2 = - vP'1/a, 

(12 - x 2) = -(l/a2)[a(p17 + pv + 17v) - (a - I) vP17], 

y2 = (p _ a)(v - a)('1 - a)/a2(a + I), (2.33) 

z2 = - (p + I)(v + 1)(17 + I)/(a + I), 

'I < - 1 < 0 < v < a < p. 

The operators are 

Ll = aKr - (K2 + M3P + a(K3 + M2)2, 

L2 = (a - 1) Kj: - (K2 + M3)2 + (K3 + M2)2 

+ M~ - K~ + a(M~ - K~). 

34. Differential form as in system 28 with 

P(z) = (z - l)z3, (I - X)2 = - VP'1, 

2y(x - I) = vp + V17 + P17 - vp17, 

x 2 + y2 - 12 = - VP'1 + vp + V17 + P17 - v - p - 'I 

E.G. Kalnins and W. Miller, Jr. 6 



                                                                                                                                    

Z2 = tv - I)(p - 1)(17 - I), 

'1 < 0< v < I <po 

The operators are 

L1 = (M? - Ka)2 - K1(K? - Ma) - (K2 - Ma)K2, 

(2.34) 

L? = M'J. - K~ - My - (M2 - Xa)2 - Ml(M2 - Ka) 

- (M2 - Ka) MI. 

3. THE SPECTRAL ANALYSIS OF SEPARABLE 
BASES ON LHC) 

Following Vilenkin21 we construct a Hilbert space 
L;( C) of homogeneous functions( Y) on the forward light 
cone C: [Y Y] = 0, Y = (yo, Yl,)'2, )'a), )'0 > 0. In par
ticular we require thatl be homogeneous of degree (J = is 
-I, 

I(p Y) = pis-1 I( y), p> 0. (3.1) 

Let T be a contour on the cone C which cuts each genera
tor exactly once. If Y(v, 1'/) is a parametrization for r 
then every Yon C can be expressed uniquely in the form 

y = p Y('" 1]), p> 0. 

Now the measure on C which is invariant under the 
identity component of SO(3, I) is well known to be dY = 
dndndYa/Yo. We define a measure dv.' on r by dY = 
pdpdv.-, i.e., 

A= 

dw == I det A I p-2 )'0-1 dvdfJ, 

[ 

)'1 

)'2 

),a 

(3.2) 

Then L~( C) is the space of measurable functions I( Y), in 
(3.1), on C such that 

J r If( y) 12 dv.- < 00. 

The inner product on this space is 

</1,12) = f r/l( Y)!?( y)dw, Ii E L~(C). (3.3) 

[It is easy to verify from (3.1) and (3.2) that the value of the 
inner product is independent of the contour r.] 

Note that the function 

II(X, Y) = [X, YJis-1 (3.4) 

belongs to Ls( C) for each X E H". Furthermore, the 
function F(X) defined by 

F(X) = <J. 17(X, • » = J r/( Y) [X, Y]-is-! dw (3.5) 

is a solution of equation ( + ) for each I E q( C). 

The action of the identity component of SO(3, J) on the 
functions F(X) as defined by operators (1.1) and (1.2) in
duces via (3.5) a corresponding action of SO(3, I) on 
Li( C) given by 

7 

M1 ==: )'2aY3 - yaoy2, 

Ma = YlaY2 - Y20yl , 

K2 = YOOY2 + Y20yO' 

M2 = )'laY3 - Y30yI' 

Xl = YOOy , + Y101l0' (3.6) 

Ka = YOOY3 + Y30yo' 
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The associated group action is unitary and irreducible. 
More explicity, if To is the sphere Yo = (I, ~l. ~2' ';a), 
.;r + <!2 + <!5 = I so that Y = P Yo. then the action of 
SO(3, I) on elements of L;< C) restricted to r 0 is 

Ml == -<!ao:2, M2 = - ';ao:.. Ma = ';10~2 - ';20~1' 

K1 == (is - 1)';1 + (I - ';f)a" - 6';2a:2, 

K2 == (is - 1 )';2 - ';1';20~, + (I - ';~)0~2' 

K3 == (is - 1)6 - ';1';30: 1 - ';2c;30{2' 

(3.7) 

(We are taking';l and ~2 as the independent variables on 
ro.) If r is another contour related to ro by r: Y = (Yo 
then the operators Lo, in (3.7), are replaced by operators 
L = Lo + (I - is) (-I (Lo (), where Lo is the purely 
differential part of Lo. 

The 34 commuting pairs of operators Ll, L2 defined in 
the preceding section can in an obvious manner be defined 
on L~( C) as commuting pairs of self-adjoint operators and 
the spectral resolution can be determined explicitly. For 
each of these systems we list a convenient contour rand 
in the most tractable cases a basis for L~( C) consist ing of 
simultaneous eigenfunctions of Ll and L2. In the case of 
new results we give a full development of their derivation. 

1. The contour r is given by 

Y = (cosh», COS1], sinfJ, sinhv), 

-00< v < 00, ° ~ fJ < 2n:. 
The basis functions are 

li}k = (I/2n) eih eim~, - 00 < r < 00, 

m = 0, ± 1, ± 2, ••• , (3.8) 

<fi}k"fP!n,) = J(T - T') c5mm l. 

The eigenvalues of L1 and L2 are -T2 and -m2 , respec
tively. 

2. Y = <t (I + »2 + 1]2), v, 1], ~(- 1 + v2 + t/ 2» 
-00 < v < 00, -00 < fJ < 00. 

The basis functions are 

li~ = (l/2n) e ifV ei/(~, 

-00 < T < 00, -00 < K < 00, 

<f;~ ,J~:;~,> == c5(T - T/) c5(K - K'). 

(3.9) 

The eigenvalues of Ll and Lz are - T2 and - K2, respec
tively. 

3. Y::= (I, (Ilk') dn(v, k) dn(fJ, k), (ik/k') cn(v, k) 

x cn(1], k), k sn(v, k) sn(fJ, k», (3.10) 

v E [-2K, 2K], fJ E [-K, -K + 2iKI]. 

The basis functions are 

liM pq = El~ (v)EI~q(fJ), 1=0, 1,2, ••• , 

a product of Lame polynomials.l2,13 Here p and q are the 
eigenvalues of the rotation e i1tMa and the reflection P x 
ei1tM1 , respectively, where P is the parity operator and m 

is the number of zeros of the Lame polynomials in the 
interval [0, K]. For I even, ° ~ m ~ tl + 1 if p = q = 
+ 1, and ° ~ m ~ tl otherwise. If I is odd, ° ~ m ~ 
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t(l - 1) for p = q = -1, and ° < m < t(l + 1) other
wise. For further details on this see Ref. 13. The eigenval
ues of Ll and L2 are /(l + 1) and AfJ: respectively. 

4. Y± = Uk sn(v, k) sn(17, k), (kjk') cn(v, k) cn(17, k), 

(ijk') dn(v, k) dn(1'/, k), ± 1), 

v E [K, iK + 2iK'], 1'/ E [iK', iK' + 2K]. 

The orthonormal basis functions are 

f~J:lq (v, 1'/) = CeE/fnq (v) Ej/hq (1'/), e = ±, (3.11) 

where C+ = (~), C_=(~), 
and j = -! + iq, ° < q < 00. These basis functions 
are a product of periodic Lame functions. 

Here m = 0, 1, 2, ... and p and q are eigenvalues of the 
operators P einM2 and P einM1 respectively. The integer 
m denotes the number of zeros Npq of the basis functions 
E/Wi(z) in the interval [0, 2K] according to the table: 

N pq p q 
~ 

2m 1 1 

2m + 1 -1 

2m + 2 -1 

2m + 1 -1 -1 

The eigenvalues of L1 and L2 are j(j + 1) and Aj~ re
spectively. 

5. Y± = (~~ cn(v, k) cn(1'/, k), e ik sn(v, k) sn(1'/, k), 

e' ~, dn(v, k) dn(l1, k), ± 1), 
e, e' = ±, v E UK', iK' + 2K], 11 E [0, 2iK']. 

The basis functions are 

f if}::" , = C± •• , Fr(v, k) FrC1'/, k), 

where 

(3.12) 

C± •• ,C±!!, = <5.!<5.,!" j = -t + iq, ° < q < 00. 

The basis functions are products of Lame Wangerin or 
finite Lame functions.l 4 The label m = 0, 1, ••• specifies 
the number of zeros of these functions in the interval 
[iK', iK' + 2K]. The eigenvalues of Ll and L2 are j(j + 1) 
and Ajm respectively. There is a Dirac <5{j - j') normali
zation on the parameter j and a Kronecker normalization 
on the remaining parameters. 

_ ( {2(v - a)(11 - a)} 112 (-v1'/)1I2 
6. Y± - Re a(a _ b) 'ab' 

I {2(v - a)(11 - a)} + 1) 
m a(a _ b) -, 

-oo<v<O<I1<oo. 

( 
1 (COShl1 cOSV ) 7· Y± = -2 -- + --h- , tanhl1 tanv, cOSv cos 1'/ 

1 _ ~ (COSh17 + COSV) + 1) 
cosh17 cosv 2 cosv cosh" ,- , 
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-00<1'/<00, ° < v < 2n, 

8 Y _ (1 ~(Sinh1'/ Sinv) 
. ± - sinh" sinv + 2 sinv - sinh/1 ' 

I (Sinv Sinh/1) coth/1 cotv, -2 """"'-----h - -.- , 
sm /1 SInv 

-oo<v<oo, ° < 1'/ < 2n. 

9. Y± = ([(lJ 2 + 1'/2)2 + 4], l {lL _ ~} 
8lJ/1 2 lJ n' 

[_(lJ2 + /12)2 + 4] 

8v/1 
± 1), 

- 00 < lJ < 00, - 00 < 1'/ < 00. 

These last four coordinate systems have been treated to 
some extent in Ref. 13 and we refer the reader to that work 
for further details. 

10. Y = (1, sinv cos17, sinv sin/1, COSlJ), 

0< lJ < n, 0<1'/ < 2n. 

The orthonormal basis functions are 

f 110) = (21 + 1 (I - I m I)!) 112 P Iml (cosv) ejm~ (3.13) 
1m 4n (I + 1m J)! I , 

1= 0,1,2, ... , m = -I, -/ + 1, ... , I. The eigenvalues 
of Ll and L2 are 1(1 + 1) and -m2, respectively. 

11. Y = (coshv, sinhlJ cosI1, sinhv sin/1, ± 1), 

- 00 < v < 00, ° <" < 2n. 

The basis functions are 

f llJ) = T(j + 1 - m) p'TfL (coshlJ)eim~ 
±jm T(j + 1) J ' 

where j = - t + iq, 0< q < 00, 

which are normalized according to 

<f in) fllP > - 2n b(q - q') <5mm,. 
±jm' ±J'm' - q tanhnq 

The eigenvalues of Ll and L2 are - j(j + 1) and 
respectively. 

12. Y = (coshlJ cosh/1, coshv sinh1'/, sinhv, ± 1), 

-oo<v,17<oo. 

The basis functions are 

where 

f ll~) = C T(L±l + ir) T( -j + ir) 
±Jf' TU + 1) 

)( P={;l~1< (e tanhv) eh~, 

e = ±, 

j = - t + iq, 

0< q < 00, and -00<,<00. 

These basis functions are normalized according to 

<f lU), fll;!),> _ <5(q - q') <5(, - ,') 
±jf' ±j'.' - q tanhnq . 

E.G. Kalnins and W. Miller, Jr. 
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The eigenvalues of Ll and L2 are -j(j + 1) and -r2, re
spectively. 

13. y = <t [e- + (1 + ,,2)e--], "e--, 

t [e- + (-1 + ,,2)e--], ± 1), 

-00<1.1<00, 

The basis functions are 

-00<,,<00. 

1 
f U3l = e-_12 Kf liZ (re--) eit'l 

Jt r(j + 1) -r , 

where 

(3.16) 

j = -t + iq, 0 < q < 00, and -oo<r<oo. 

These functions are normalized according to 

U;.(13), f9 3)) = J(q - q') J(T - r'). 
Jt J T q tanhn:q 

The eigenvalues of Ll and L2 are -j(j + 1) and -r2, 

respectively. 

14. y = <t (l + 1.12), V COS", v sin", t( - 1 + 1.12», 

o ~ 1.1<00, o ~ ,,< 2n:. 

The basis functions are 

fiVt' = (f,J/2 Jm (Xv) eim'l, (3.17) 

m = 0, ± 1, "', 0 < X < 00. The eigenvalues of L1 and 
L2 are - X2 and -m2, respectively, 

<f~~~,f~~~,> = J(X - X') Jmm,. 

15. y = <t (I + cosh2v - sin2,,), coshv COS", 

sinhv sin", t( - I + cosh2v - sin2,,», 
-00<1.1<00, o ~ " < 2n:. 

The orthogonal basis functions are 

{
Cen(v, X2/4) Cen(", X2/4), 

f (15)-= 

Xn 2 Sen(V, X /4) Sen(", x2/4), 
(3.17) 

products of Mathieu functions. Here n = 0, 1, 2, ... is the 
number of zeros of the periodic Mathieu functions in the 
interval 0 ~ " ~ tn:. 

The eigenvalues of Ll and L2 are - X2 and an (even), 
bn (odd), respectively, where even and oddness refer to 
the periodic Mathieu functions under the interchange 

" -+ - ". 
16. Y = <t [1 + tc,,2 + 1.12)2], t(,,2 - 1.12), ,,1.1, 

t( - 1 + tc,,2 + 1.12)2», 

-00<1.1,'1<00. 

The basis functions are 

fkI
1
6
). = C • ./ 2 c~shnA [D-il- lt2 (ea,,) Dil-1/2 (av) 

where 

9 

+ D-il-1/2 (-ea,,) D il- 1I2( -av)], (3.18) 

e = ±, a = einl4 ./2X, and C+ = ( ~), C- = (~), 
-00<.1.<00. 
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The eigenvalues of Ll and L2 are - X2 and 2.1., 

<fiI16)., fi~l~·,) = J(X - X') J(A - A') J.B,· 

17. For this coordinate system a suitable choice of con
tour on the cone is 

Y = (k snv, (ik/k') cnv cos'1, (ikjk') cnv sin", (Ijk') dnv), 

where 

v E [K, K + 2iK'], o ~ ,,< 2n:. 

The basis functions have the form 

{
cosm" 

IJ' = cP(v) . 
smm" 

where m = 0, 1, 2, ' .. and cP satisfies 

__ I_!£ (cn(v k) dcP) _ [ m
2
k'2 

cn(v, k) dv ' dv cn2(v, k) 

+ (1 + s2) cn2(v, k) - .1.-(1 + S2)J cP = 0, (3.19) 

where A is an eigenvalue of L2, the eigenvalue of L1 being 
_m2, If we write cP(v) = [cn(v, k)]m E(v) then S satisfies 
the equation 

d2E (2m + 1) sn(v, k) dn(v, k) dS 
dv2 cn(v, k) dv 

+ [- k 2(l + S2 + m(m + 2» cn2(v, k) + HAl S = 0, 

(3.20) 

where HA = k 2A + k 2(1 + S2) + (k2 - k'2)m(m + 1). 

There are then four types of solution to this equation and 
the imposition of periodic boundary conditions requires 
A to assume a distinct set of discrete values An. We now de
velop the solutions. 

(1) B = £. Ar [cn(v, k)]2r, 
r=O 

the boundary condition is 

S(K + iK') = E(K + 2iK') = o. 
The recurrence relations for the coefficients Ar are 

k 2HAAo + 4k'2(m + I)Al = 0, 

k 2[4(r - I)(r + m - 1) + (I + S2 + m(m + 2»lAr-l 

+ [(k'2 - k 2) 2r(2r + 2m + 1) - HA] Ar (3.21) 

4k'2 
- k 2 (r + I)(r + m + I)Ar+1 = 0, 

where HA = A + (1 + s2). We write this solution as 

Lti;n(v, k) = I: Ar[cn(v, k)lm+2r, n = 0, 2, 4, .. '. 
r=O 

(2) S = dn(v, k) t Br[cn(v, k)]2r, the boundary con-
r=O 

dition is S'(K + iK') = S(K + 2iK') = 0, The recurrence 
relations for the coefficients Br are 

k2HBBo + 4k'2(m + l)Bl = 0, 

E.G. Kalnins and W. Miller, Jr. 9 



                                                                                                                                    

k 2[(2r - 1)(2r + 2m + I) + (1 + S2 

+ m(m + 2))] Br-l + [(k'2 - k 2) (3.22) 

4k'2 
x 2r(2r + 2m + I) - 4rk2 - HB]Br - F(r + I) 

x (r + m + I)Br+! = 0, 

HB:::: HA + 2k2(m + I). 

The solutions are written 

L;:m (v, k) = dn(1.i, k) I: Br[cn(v, k)]m+2r, n = I, 3, .... 
r=O 

(3) E = sn(v, k) dn(v, k) I: Cr[cn(v, k»)2r, the boundary 
r=O 

condition is E(K + iK') = E'(K + 2iK') = 0. The re
currence relations for Cr are 

k2HeCo + 4k'2(m + I)Cl :::: 0, 

k 2[(2r - 1)(2r + 2m + 3) + (1 + S2 + m(m + 2»] Cr - 1 

+ [(k'2 - k 2) 2r(2r + 2m + 3) - He] Cr (3.23) 

4k'2 
- F(r + I)(r + m + I)Cr +! = 0, 

He = HA + 2(k2 - k'2)(m + I). 

The solutions are written 

Lt;;;-n(v, k) = sn(1.i, k) dn(v, k) I: Cr[cn(v, k)]m+2r, 
r=O 

n = 2,4, .... 

(4) E = sn(v, k) I:;:,=o Dr[cn(v,k)]2r, the boundary con

dition is 

E'(K + iK') = E'(K + 2iK') = 0. 

The recurrence relations for the Dr are 

k 2 H DDo + 4k'2(m + I )Dl = 0, 

kZ[4(r - 1)(r + m) - 2(2m + 1) + (1 + S2 

+ m(m + 2»] Dr-l + [(k'2 - k 2) 2r(2r + 2m + 1) 

4k'2 + 4rk'2 - HD]Dr - T2 (r + I)(r + m + 1) Dr+! = 0, 

HD = HA - k'2(4m + 3). 

The solutions are written 

L;;;;-n (v, k) = sn(1.i, k) I: D,[cn(v, k)]m+2r, 
r=O 

n = 1,3, 5, .. '. 

The general solution can be written as 

t
cosmt] 

n!,J~··' = L~s:nn (v, k). , 
smmt] 

(3.24) 

(3.25) 

where e and e' are the eigenvalues of the operators Pe i 7<M3 

and ei7rM3 • The number n is the number of zeros of the 
basis functions S in the interval [K - iK', K + iK']. We 
will call these solutions associated periodic Lame functions 
of the first kind. 
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18. Y = (k sn(v, k), (ljk') dnCv, k) cOSt], (Ijk') dn(v, k) 
x sint], e(ikjk') cn(v, k», where 

e = ± I, 1.i E [K, K + iK'], ° ~ t] < 2n. 

The basis functions have the form 

lcosmt] 
lJf = cP( 1.i) . , 

smm,! 

where m = 0, I, 2, . . . and cP satisfies 

I d ( dcP) I m2k'2 
-cd-n(-v-, kc-) dv dn(ll, k) dv + ldn2(v, k) 

- (I + s2) dn 2(v, k) + ). + (1 + S2)] cP = 0. (3.26) 

The solutions to an equation similar to the above, have 
been investigated in Ref. IS. The development of solutions 
to the above equation proceeds in direct analogy with the 
procedure used in Ref. IS to obtain finite solutions. In the 
case of interest here however we have the solutions ex
pressed as an infinite series. We denote the solutions of 
(3.20), 

cP :::: [dn(!!, k)]m Kl'im (dn(\.!, k», 

in analogy with the solutions in Ref. 15. The superscript 
P = A, B, C, or D indicates the form of the solution as 
an expansion in Jacobi elliptic functions, viz. P = A cor
responds to the function 

Ktim (dn(v, k)) = L A,[dn(v, k)J2r. 
r=O 

The recurrence relations for the expansion coefficients are 
those in Ref. IS with 2F(2F + 2) replaced by (1 + S2) and 
k by k'. Similarly we have that P = B gives 

K!im(dn(v, k» = cn(v, k) L Br[dn(!!, k)]Zr, 
r=O 

P = C gives 
00 

Kf,fm (dn(v, k)) = sn(v, k) L Cr[dn(v, k»)2r, 
r=O 

and P = D gives 

KPim (dn(\.!, k» = sn(v, k) cn(\.!, k) L D,[dn(v, k)J2r. 
r=O 

In each case the spectrum of L2 is discrete and is labelled 
by the positive integer n. The basis functions are then of 
the form 

(3.27) 

where 

and C- = (~). 
The Kl'im functions we have introduced here will be called 
associated periodic Lame functions of the second kind. 

21. Y = «(kjk') cn(1.i, k), (k/k') dn(!!, k) cos,!, 

(kjk') dn(!!, k) sint], ik sn(v, k», 

where v E [- iK', iK'], ° ~ '! < 2n. The basis functions 
then have the form 
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[
cosm11 

'P= lP(v). , 
smm11 

with m = 0, 1,2, ... 

where IP satisfies the same equation as in system 18. The 
corresponding boundary value problem is singular at both 
ends v = ± iK'. The spectrum is however discrete and 
suitable boundary conditions are as follows. 

(1) dn(v, k) 4>(v) bounded at v = ± iK', IP(O) = O. 
Solutions satisfying these conditions can be developed in 
the form 

~ 

lP(v) = L: Ar[dn(v, k)]-I-ts-2r. 
r=O 

Such solutions are denoted by Wl;I(v, k) and correspond 
to an eigenvalue A,2n of L2. This solution has 2n zeros in the 
interval [- iK', iK']. The recurrence relations for the 
coefficients Ar are 

[H + (I + k'2Xi - s)s]Ao + 4(1 + is)Al = 0, 

k'2 [m2 - (2r - 1 + is)2] Ar-l + [A,2n + 1 + S2 

+ (2r + 1 + is)(2r + is)] Ar 

- 4(r + I)(r + 1 + is)Ar+l = O. 

(2) dn(v, k) lP(v) bounded at v = ± iK', IP'(O) = O. 
Solutions satisfying these conditions can be developed in 
the form 

lP(v) = sn(v, k) L: Br[dn(v, k)]-2-ts-2r. 
r=O 

Such solutions are denoted by W2;-;i;1 (v, k) and correspond 
to an eigenvalue A,2n+l of L2. Each such solution has 2n + 
1 zeros in the interval [- iK', iK']. The recurrence relations 
for the coefficients Br are 

[H' + (1 + k'2)(i - s)s]Bo + 4(1 + is)Bl = 0, 

k'2 [m2 - (2r - 1 + is)2] Br-l + [H' - 4k'2r 

+ (I + k'2) (is + 2r + 2)(is + 2r + 1)]Br 

- 4(r + I)(r + 1 + is)Br+l = 0, 

H' = -2k'2(1 + is) + (1 + S2) + A,2n+l. 

The complete set of basis function is 

m = 0, ±I, .. 

(3.28) 

22. For this coordinate system suitable coordinates on 
the cone are given by the relations 

( ')2 2(v-a) 
t + lZ = a(a _ b)' 

y = J ~; sin", 

with - 00 < v < O. 

-v J
-

x = ab cos11, 

23. Y = (t [coshv + 112/coshv], 11/coshv, tanhv, 

I/coshv - Hcoshv + 112/coshv]), 

-oo<v<oo, -00<11<00. 

If we write the basis functions as 'P = coshv IP eiT~ then 
IP satisfies 
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~ + tanhv - - .2 cosh2v + -_. + A, IP = 0, d21P dIP [ S2] 
dv2 dv cosh2v 

(3.29) 

where A, is the eigenvalue of L2. The spectrum of A, is dis
crete and the corresponding eigenvalues are denoted by 
A,t~2r' r = 0, ± 1, . . .. (This is the notation adopted by 

Meixner and Schiifke.20 ) We note that (3.29) is a form 
of the spheroidal equation. The basis functions are then 

f~~~r.T = coshv S!t~~(i sinhv, .) eiT~, 

where -00<.<00, r=O, ±1, ±2, and v=l=t 
(mod I). The eigenvalues of Ll and L2 are _.2 and A,!~2r' 

24. Y = (l/sinhv+t[sinhv + 112/sinhv], 11/sinhv, cothv, 
t {sinhv - 112jsinhv]), 

-oo<v<oo, -00<11<00. 

The basis functions have the form 

(3.30) 

where -00 <. < 00, r = 0, ±I, ±2,' " and v * 
!(mod I), and the eigenvalues of Ll and L2 are _.2 and 
A,~~2r' respectively. 

25. Y = (t coshv, tanhv cos11, tanhv sin11, 

l/coshv - t coshv), 

- 00 < v < 00, 0 <: 11 < 2n. 

The basis functions are 

(
m + I + iK + is) (m + 1 + iK - is) fk2J.) = (2n3)112 r 2 r -::-2---

x [rem + I) r(l + il<)]-1 (tanhv)m(coshv)-tk 

F (m + 1 + iK + is 
x 2 1 2 ' 

m + 1 + iK - is 
2 

m + 1; tanh2v) [C~Sm11, 
smm11 

(3.31) 

where m = 0, 1, ... and 0 < K < 00. The eigenvalues of 
the operators Ll and L2 are -m2 and -K2, respectively, 

<n2JJ ..r~;fn'> = d(K - K') dmm'. 

26. Y = (I/sinhv + t sinhv, cothv cos11, cothv sin11, 

t sinhv), 

-oo<v<oo, 0<: 11 < 2n. 

The basis functions are 

f~2J.) = ../2n n2 (tanhv)1+ill<+S) (coshv)-il< 

r(t[m + 1 + i(s + K)]) 
X FH [m + 1 - i (s + K)J) 

r(t(m + 1 + i(K - s)]) r( -iK) 
x r(Hm + 1 + i(s - K)J) F(l + iK) 

F [- m + 1 + i(K + s) 
X 2 1 2 ' 

E.G. Kalnins and W. Miller, Jr. 11 



                                                                                                                                    

m - 1 + i(K + s). 
2 ' 

1 ) [CO. sm", 
cosh2v 

smm" 

where m = 0, 1,2 ... and 0 < K < 00. The eigenvalues 
of the operators L1 and L2 are - m2 and - K2 respectively 
where m = 0, I, ... and 0 < K < 00. The normalization 
is the same as for system 25. 

27. Y = (~_+ 4 + ,,2 !L -.lv -v4 + 4 _ ,,2) 
8v 2v' v' 2' 8v 2v ' 

-00 < v < 00, -00 <" < 00. 

28. From this point on the spectral problems that have 
to be solved involve more than one eigenvalue simul
taneously. We therefore give only the coordinates on the 
cone in these cases, 

(2 = V" x 2 = (v - 1 )(11 - I) 
ab' (a - I)(b - I)' 

2 _ (v - b)(" - b) 
Y - (a - b)(b - l)b' 

Z2 = (v - a)(" - a) 
(a - b)(a - I)a' 

I < " < b < v < a. 

29. (2 = 
(v - 1)(" - I) 
(a - I)(b - 1)' 

2 _ (v - b)(" - b) 
Y - - (a - bleb - l)b' 

2 (v - a)(11 - a) 
Z = (a _ b)(a _ l)a' ,,< 0 < 1 < b < v < a . 

. 2 _ 2(v - a)(" - a) 
30. (x + It) - (a _ b)(b _ l)b' 

2 _ (v - 1)(" - 1) Z2 = _ v" 
Y - (a - I)(b - I)' ab' 

,,<O<v<1. 

31. (t + X)2 = V", 
a 

(t2- X2) = v + " _ (a + I)v" 
a a2 ' 

12 

2 _ (v - 1)(11 - 1) 
Y - - (a - 1) , 

Z2 = (v - a)(" - a) 
a2(a - I) , o < 11 < 1 < v < a. 

32. (t + X)2 = _ V" (t2 _ x 2) = v + " _ (a + l)v" 
a' a a2 ' 

2 _ (v - 1)(11 - 1) 
y - - (a - 1) , 

Z2 = (v - a)(11 - a) 
a2(a - 1) , 

33. (I + X)2 = _ V", 
a 

(t 2 _ x 2) = _ (v + 11) + (a - 21)v11, 
a a 

2 _ (v - a)(11 - a) 2 (v + 1)(11 + 1) 
Y - a2(a + 1) , Z = - (a + 1) , 

11 < - 1 < 0 < v < a. 
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34. (t - X)2 = - V11, 2y(x - t) = v + 11 - V11, 

z2 = (v - 1)(11 - 1), 11 < 0 < v < 1. 

4. SEPARABLE BASIS FUNCTIONS ON L2(H+) 

In this section we present the basis functions for L2(H+) 
corresponding to the coordinate systems presented in Sec. 
2. This is done using (3.5) and the spectral resolution of the 
operators L1 and L2 computed in the previous section. The 
basis functions are listed with the minimum of duplication 
necessary. Some of these basis functions which correspond 
to subgroup reductions were given by Vilenkin and Smor
odinski16 (see also Kalnins17). In each case the integral 
is relatively easy to evaluate because we know in advance 
the form of the separated solutions in the appropriate coor
dinate system such that variables separate in the integral. 
The 34 integral identities (3.5) corresponding to the 
separable coordinates for ,1", = a(a + 2)", are nontrivial. 
Indeed many of the following results appear to be new. 

1 Fill _ nT([lml + 1 + i(s + r)]/2) 
. Tm - relml +1) 

F(U m I + 1 + i(s - r)]/2) 
x T(l + is) 

x eiTveim~(tanhp) I m I (cOShp)-l-is 

F (
I m I + I + i(s + r) 

x 2 1 2 ' 

I m 1+ 1 + i(s - r) 
2 

3. Fe<'fJqq, = Fe Tgsj h 
IS - sin p 

x P={i"l+7s (coshp) ElIt(v) ElfA'(11)· 

4. FitlJt = C,H3(p) EJ1:l'(v) E/fii'(11), 

where 

HS( ) _ ret + i(q + s» ret + i(s - q» 
q p - FO + ip) coshp 

X P=I~2+iq (I: tanhp). 

5. F~5W: = C± .. ,H~(p) Ff(v, k) Ff(11, k). 

6. FIIO> = (21 + 1)(/ -lml)!)112 F(is) 
1m 4n(l + Iml)! F(is -l)Jsinhp 

x Pili.Hi (coshp) Pyt(COSv) eim,. 

7 F (11) C HS( ) ret - m + iq)pm ( h) im~ 
• 8 im = 8 q P 2nF(t + iq) -1I2+iq COS v e . 

P!12) _ C HS() ret±-i(r + q» Hi + i(r - q» 
8. ..'Jm - ,.' q p ----r(f" + iq) 

X ~l/l+iT(I:' tanhv) eiT~. 

e-v/2 . 
9. FI\31 = C HS(p) Kiq(re-v ) e·T~. 

8JT 8 q F(t + iq) 

1 O. Fi~l = J sx sinhns e-P Kis(Xe-P) Jm(XV) eim~. 

11. Fi~51 = Jssinhns e-pKis(e-p) 

E.G. Kalnins and W. Miller, Jr. 12 



                                                                                                                                    

[
Cen(v, X2/4) cen(1'/, X2/4) 

x . 
Sen(v, X2/4) sen(1'/, X2/4) 

12. F!lfl = C ..; s sinh{7ts/2) e-pK's(xe-p) 
'x I cosh 7tA 

x [D-il- 1nCCO'1'/) D j )._1I2{O'V) 

+ D_il- I12(-CO'1'/) Djl- l12{-O'v)]. 

Icosm1'/ 
13. F~J)III = L;~n(P, k) L~~n(v, k). . 

smm1'/ 

14. FiJ~IIP = [dn{v, k) dn{p, k)]m K~m(dn{v, k» 

{
cosm1'/ 

x Kfttm(dn(p, k». . 
smm1'/ 

15. F:;JI = W;m(P, k) W;m{v, k) eim". 

16. F:n!r .• = T •.• coshv cosp S~~I~W sinhv, ,) 

x Ps~S(sinp, ,2) ei.", 

where T •.• is a normalization constant. 

17. F:tfr .• = t •.• sinhv sinp S!~~~(coshv, ,) 

x Ps!S(cosp, ,2) ei.", 

where t •.• is a normalization constant. 

18. F,flJ.1 = M"m(tanp tanhv)m(coshv)-i"'{cosp)1+m+is. 

F (m + 1 + i(1C + s) m + 1 + i(1C - s) 
X21 2 ' 2 ' 

1 h2) F (m + 1 + i(1C + s) m + ; tan v Z 1 2 ' 

m + 1 + i(s -1C) 1" 2 ){cosm1'/ 
2 ' m + , - sm p. , 

smm1'/ 
M"m = 11:22 (3m+ils-",1+2J/:i. 

where 

r{a)r(b)r(a + m - t)r(l + is + m) 
x r(l + i1C)r{ta + m + t)r(ta + m + t)r(l + is) 

x 3F2(a, b; a + m - t, ta + m + t, 
ta + m + t, t) 

a = [m + 1 + i(IC + s)]/2, 

b = [m + 1 + i(1C - s)J/2. 
19. F~;:l = M:m{tanhv)I+illt+sl(sinhv)-i"'(cotp)m 

( . )l+m+is F (-m + 1 + i(1C + s) x smp 2 1 2 ' 

m + 1 + i(1C + s). 1 + .. t h 2 ) 2 ' IS, an v 

F (m + 1 + i{1C + s) m + 1 + i(s - 1C). 
XZl 2 ' 2 ' 

m + 1; -cos2 P . ) {
cosm1'/ 
smm1'/' 

where 

M' = 2 2 N r(l + is + ;1C/2) real) r(a2) r(a3) 
"m 11: r{bl) r(b2) 

x aF2(a~1~2b2a31- 1), 
where 
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-m + 1 + ;(1C + s) m - 1 + ;(s + 1C) 
al = 2 ' a2 = 2 ' 

m + is . 
a3 = -2- + 1 + I (IC + s), 

bI = 1 + iIC, 

b - m + i(s + 1C) + 2 + 2' + . 2 - 2 IS IIC, 

and 

N = r([m + 1 + i(s + 1C)J/2) r(Cm + 1 + ~(IC - s)]/2) 
r([m + 1 - i{s + 1C)]/2) r([m + 1 + I(S - 1C)]/2) 

r( -iIC) r(l + is + m) 
x r(l + i1C) r(l + is) . 

Let {ltp } be an ON basis for L~ (C) consisting of(gener
alized) eigenfunctions corresponding to a commuting pair 
Ll, L2, 

Llltp = A/1P' L2/1p = 11111" 

and let {Flp} be the associated separable functions on 
H+, 

Fl/X) = (Ill" heX, • » . (4.1) 

It follows that 

heX, Y) = [X, Y]'S-l = :?:ltjY) Fl,/X) (4.2) 
A.p 

with convergence in L~ (H+) for each X E H+. A direct 
computation yields 

(h (Xl, • ), h(X2, • » = 47t2Fl(I - is, 1 + is; 

(4.3) 

and, from (4.2), 

(h(X}, • ), h(X2, • » = E FJ..p(Xz) Fl./XI ). (4.4) 

Thus, (4.3) is a bilinear generating function for products 
of separated solutions Fl.p' 

If {f~.,8} is ON basis for L~ (C) consisting of eigenfunc
tions of another commuting pair L~, L; and F~.,8 = <1:.,8' 
h) we have the pointwise convergent expansion 

F~.,8(X) = :?: q:tF)../X), (4.5) 
A.p 

where the sum or integral is taken over the spectrum of 
Ll, L2.1 Furthermore the expansion coefficients can be 
computed in L~( C). Indeed 

(4.6) 

so all overlaps can be expressed as integrals over a contour 
ron c. 

A number of these coefficients can be found in the liter
ature. In particular, systems 3 and 10 correspond to the 
subgroup reduction SO(3, I)::J SO(3) and the overlaps 
relating these systems can be found in Ref. 12. Systems 
4-9 and 1I-13 correspond to the subgroup reduction 
SO{3, I)::J SO(2, I) and appropriate overlaps are com
puted in Ref. 13. Systems 2 and 14-16 correspond to the 
subgroup reduction SO(3, 1) ::J E(2) and overlaps are con
tained in Ref. 18. The overlaps relating systems 1 and 3 can 
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be expressed in terms of Clebsch-Gordan coefficients for 
SO(2, I). 

5. EXPANSIONS ON L2(Hs) 

In this section we give the expansions on L2(Hs) for 
coordinate systems on the single sheeted hyperboloid Hs 
which cover one half of Hs. This is the imaginary Lobachev
ski space of Gelfand et al. 7 Only some of the coordinates 
given in Sec. 2 correspond in a natural way to such coor
dinates on Hs. The spectrum of L1 is both continuous and 
discrete for L2(Hs) and there are therefore two sets of basis 
functions for each of the coordinate systems we discuss. 
We now list the basis functions for the coordinate systems 
on L2(Hs) together with the coordinates. The orthonor
malization is always Kronecker delta for discrete spectrum 
and Dirac delta for continuous spectrum. The discrete 
spectrum basis functions are obtained from (1.9) and (1.l0) 
exactly as in the example worked out in Ref. 19. 

1. t = HeP - (1 + 1.1 2 + ,,2) e-p], x = e-Pv, 

z = HeP + (I - 1.1 2 - ,,2) e-p], 

-00 <p,v,,,<oo. 

The basis functions are 

e-p( s )112 .. Fe 121 = - --;----- [Jis(Xe-P) + J-ts(Xe-p)] el'·el"~, 
." 21t 2 smh1ts 

where X2 = r2 + K2, 

Fdl21 = ../ n e-P J2n(Xe- P) ej'.eirc~ . 
• rc 1t 

The superscript refers to the system in Sec. 2 to which the 
coordinates correspond via analytic continuation. 

2. t = sinhp, x = (Ijk') coshp dn(v, k) dn(", k), 

y = (ikjk') coshp cn(v, k) cn(", k), 

z = k coshp sn(v, k) sn(", k), 

- 00 < p < 00, v E [-2K, 2K], 

" E [-K, -K + 2iK']. 

The basis functions are 

F, 131 .. ' = 4nsr( - is) [pi8( tanhp) 
Cln coshp 

r(l + I + is) p-i8 (t h )]jjI3111' 
- r(l + I _ is) I an P In , 

Fd I31 •• ' = 2 (n (2n - 1)!)1I2 _1_ Prn(tanhp)jjI31I1', 
In (2n + I)! coshp n 

where for the discrete spectrum part I = 0, 2, ...• 2n. 

3. t = sinhp, x = coshp sinv COS", 

y = coshp sinv sin", z = coshp COsv, 

-00 < p < 00, o ~ v", n, o ~ " < 2n. 

The basis functions are 

F, 1101 = 41tsr(is) [pi8(tanh ) 
elm coshp I P 

_ r(l + I + is) p-iS(tanhP)]jjlI01 
r(/ + I - is) I 1m • 
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Fd/ IOI = 2(n (2n - 1)!)1I2 _1_. Prn(tanhp)jjlIOI. 
m (2n + I)! coshp m 

4. t = H(eP - (I + 1.1 2) e-p], x = e-Pv COS", 

y = e-Pv sin", 

- 00 < p < 00, 

The basis functions are 

0<1.1<00, o ~ " < 21t. 

( 
s ) 112 Fe 1141 = - .-- e-P[Jis(Xe-P) + J-ts(Xe-p)]f1141, 

xm 2 smhns xm 

FdiM' = Nn e-P J2n(xe-p)lxIM'· 

5. t = HeP - (1 + cosh2v - sin2,,) e-p], 

x = e-P coshv COS", y = e-P sinhv sin", 

-00 < p < 00, -00 < v < 00, o ~,,< 2n. 

The basis functions are 

FeliSI = ( . S )1/2 e-p[Jts(Xe- p) + J-is(Xe- p)]/,IISI, 
xn 2 smh1ts xn 

Fdi~51 = 2../n e-P hn(Xe-p)li~~'· 

6. t = Hep - (l + t<,,2 + 1.1 2)2) e-p], 

x = t e-p(,,2 - 1.12), Y = e-P"v, 

z = HeP + (I - t<,,2 + 1.12)2) e-p], 

- 00 < p < 00, - 00 < v < 00, - 00 <" < 00, 

( 
s ) 1/2 

Fe~lll. = 2" sinhns e-p[1ts(Xe-p) + J-is(xe-p)J!xI161., 

Fdi~61. = 2../n e-P hn(Xe- p) Ix
I161 •• 

7. The coordinates are as for coordinate system 17 with 

p E [0,2iK'], v E [iK', iK' + 2K], 0 ~ " < 2n. 

The basis functions are 

1171 L' ( k) L '( k) [cosm" FUmn = l:nn p, l:nn v, sinm" , 

where t = s for the continuous spectrum basis functions 
and t = 2in for the discrete spectrum functions. These 
solutions are obtained by solving the recurrence relations 
for system (17) with s replaced by 2in. 

8. The coordinates are as in system 18 with 

p E [0,2iK'], v E [iK', iK' + 2K], 0 ~ " < 21t. 

The basis functions are 

FU~!' = [dn(v, k) dn(p, k)]m Kfn~(dn(v, k» 

x KP. (dn(p, k» [c?sm", 
tnm smm" 

with t as in system 7. 

9. The coordinates are as in system 19 with 

p E [0,2iK'], v E [iK', iK' + 2K], 

o ~ " < 2n. 
10. The coordinates are as in system 21 with 

p E [0, 2iK'], v E [0,2iK'], 0 ~ " < 2n. 

The basis functions are 
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FU;,~~' = Wrm(P, k) Wt~(v, k) eim~, 

where t has the same significance as in system 7 of this 

section. 

II. The coordinates are as in system 22 with 

o < p < 00, 0 < v < 00. 

1 [COShv SinhP] ,,2 
12. t =2- sinhp - coshv + 2coshv sinhp' 

x = --"-- y = tanhv cothp, coshv sinhp' 

I I [Sinhp COShv] 
z = coshv sinhp + -i coshv - sinhp 

,,2 
2coshv sinhp' 

-00 < p < 00, -00 < v < 00, -00 <" < 00. 

The basis functions are 

FS~~31 = Kt. sinhp coshv S~~Mcoshp, T) 

x S~~Msinhv, T) ei'~, 

with t as in system 7 and K;. a normalization constant. 

1 I [Sin)) Sinp] 'l2 
13. t = sTI1~sTnp + T sinp + sin)) + 2 sinp sinv' 

x = __ L __ 
sinv sinp' 

y = cotp cotv, 

z = } ~nv + sinp _ _rt __ 
2 sinp sin)) 2 sinv sinp' 

FS~~41 = K~< sinv sinp Pstt( COSv, T2) 

X Ps~t(cosp, T2) ei .", 

with t as in system 7 and ~Tf a normalization constant. 

14. t = ~ [COShv - sinhP] x == cothp tanhv COS", 
2 smhp coshv' 

y = cothp tanhv sin'l, 

I 1 [SinhP cOShv] 
z = coshv sinhp + 2 coshv - sinhp , 

- 00 < p < 00, -00 < v < 00, ° :;;;; 'l < 2n, 

FC~~I == NI<m(tanhv)m (tanhp)l+ill<+S1 (coshv sinhp)-il< 

where 

15 

x 2F1(~---±J±J_~-Ls) m + 1 + i(K - s). 
2 ' 2 ' 

) (
-m + 1 + i(K + s) m + I; tanh 2v 2F1 ----2------, 

m + 1 + i(K + s) . ) lcosmn 
- -----------, 1 + IS; tanh2p . ", 

2 smm'1 

N = 4n22CI-m+i<s+I<]/2 TO + is + m) 
ICm F(l + is) T(l + jIC) 

x 1: (al),. (a2),. (aa),. (a4),. _1_ 
r=O (b1),. (b2),. (ba),. r'4r ' 

al = Hm + I + i(K + s)1, 

a2 = Hm + 1 + i(K - s), Oa = -is, 
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04 == t[m - 1 + i(s - K)], hI == m + 1, 

b2 == Hm - 1 - i(s + K)], 

and 

ba == Hm + 1 - i(s + K)], 

Fd/;,51 == (tanhv cothpr11 ?di';;--2nl.m-+-2n (cosh v) 

d l+ (. - h ) {cosm'! x Im-2nl m+2n I Slfl p. . . SlOml7 

Here I,m == 0, 1,2, ... and db~ (cosh) is the matrix ele
ment of a hyperbolic rotation in the compact basis of the 
positive discrete series ofSL(2, R) as given by Bargmann.l1 
Explicitly these functions are 

db~(coshz) 
= N pq( si nhz )-(p+q)( coshz )P-q 

x 2Fl(1 + I - q, -/ - q; I + q - p;-sinh2 z),q > p 

== Npq(sinhz)-<P+'l)(coshz)q-p 

x 2F1(1 + I - p, -I - p; 1 + p - q; -sinh2z), 

p >q, 

where 

- - I 
Npq = (-l)p-q Nqp = (p-__ q)! 

x (F( -I - q) F(I + I - q»)+1/2 
F(-I-p)F(/+ I -p) 

jf p ~ q. (Note: We have at the time of writing not com
puted the normalization constant for discrete spectrum 
basis functions.) 

15 t = __ 1 ____ ~ [Sinv + Sin p] 
. sinv cosp 2 sinp sin v ' 

x = cotp cotv cOS'l, y = cotp cotv sin,!, 

z = 1- [s!nv + s~npJ. 
2 smp Slnli 

Fci(JI = N:m(cotp cotv)m(sinp sinv)l+m+ts 

x 2Fl (m + 1 + i(K + s) f!! :t.J __ +i(s ___ 3). 
2 . 2 ' 

m + I; _ cos2p) 2Fl(m ±l_~j{~ _+ s), 

111.+1 +L[~--.:-: J(); m + I' -cos2v) {c?smrr 
2 'smm,!' 

where 

Nt = 2 2NF(al )F(a2)F(aa)F(-m + iK) 
ICm n T(bl) F(b2) 

F (
al a2 aa 1) 

x a 2 hI b2 

with al, a2. and bi as for system 12 on L2(Hs), 

Oa = iK + His + m - 1), 

b2 = 2iK + t (is - 3m - 1), 

and N is as given for system 26 on L2(H+). 

Fd/;,,61 = N[:n(cosv cosp)m(sinv sinp)2n+1 
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P (m,2n) ( . 2 ) p(m,2n) ( . 2 ) {COSml'] x I Sin v I Sin p. , 
SInm'1 

where p!a.~) (z) is a Jacobi polynomial and 

Nfl = (nr(m + / + I) r(2n + I + I) 2m+2n+l)l!2/ 
1m 27tl! r(m + 2n + / + 2) 

pr,2n)(o), 

16. (p2 - v2)2 + 4 1']2 X -_!L, 
t= +-, 8pv 2pv pv 

1 [v p ] - (p2 - v2)2 + 4 rJ2 
Y = "2 p + -; , z = 8pv - 2pv' 

- 00 < v, p, rJ < 00, 

We have not given any mention of the coordinate systems 
which require the solution of multiparameter eigenvalue 
problems, 
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Structural stability of the phase transition in Dicke-like 
models* 
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The free energy for a general class of Dicke models is computed and expressed simply as the minimum 
value of a potential function <1> = (E - TS)/ N. The function E/ N is the image of the Hamiltonian under 
the quantum-classical correspondence effected by the atomic and field coherent state representations. and 
the function S is the logarithm of an SU(2) mUltiplicity factor. The structural stability of the second order 
phase transition under changes in the functional form of the Hamiltonian is determined by searching for 
stability changeovers along the thermal critical branch of <1>. The necessary condition for the presence of a 
second order phase transition is completely determined by the canonical kernel of the Hamiltonian. The 
sufficient condition is that a first order phase transition not occur at higher temperature. The critical 
temperature for a second order phase transition is given by a gap equation of Hepp-Lieb type. 

1. INTRODUCTION 

For sufficiently large values of the coupling constant 
A, the Dicke model Hamiltonian! can support a second 
order phase transition. 2 Several recent studies3- 5 have 
shown that the phase transition disappears when the func
tional form of the Hamiltonian is changed, It is therefore 
of interest to inquire about the structural stability of the 
second order phase transition under changes in the func
tional form of the Hamiltonian describing the interaction 
between a simple field mode and N identical two-level 
atoms. Extension to finite mode systems is 
straightforward. 

We describe the general class of nonlinear extensions4 

of the Dicke model under consideration in Sec. 2. In 
Sec. 3 the free energy F/N is computed for any model 
Hamiltonian in the class studied. The result is surpris
ingly simple. The free energy is expressed as the mini
mum of a potential function <1> = (E - TS)/N. The function 
E/N is the P or Q representative of the Hamiltonian in 
the direct product atomic coherent state-field coherent 
state representation, The function S is the logarithm of 
an SV(2) multiplicity factor. The minimum is taken over 
the space of atomic and field coherent state parameters. 
Evaluated at the coherent state parameters which mini
mize <1>, the functions <1>, E/N, and SiN are equal to the 
free energy, energy, and entropy per particle_ 

In Sec, 4 we discuss first and second order transitons, 
Each model Hamiltonian must be investigated separately 
to determine whether or not first order phase transitions 
exist, since these involve global stability changeovers. 
Since second order phase transitions involve local prop
erties, it is possible to give both necessary and suffi
cient conditions for their occurrence. The necessary 
condition does not involve the entire Hamiltonian, but 
only a particular piece of it. The critical temperature 
for a second order phase transition is determined from 
the "canonical kernel" by a gap equation of Hepp- Lieb 
type. The sufficient condition for a second order phase 
transition is that it is not preempted by a first order 
transition at higher temperature. The transition is ex
tremely insensitive to the functional form of the Hamil
tonian, provided the Hamiltonian possesses a particular 
kind of symmetry. In general, when the symmetry is 
violated, the second order transition disappears. 

2. MODEL HAMILTONIANS 

To study the effect which the structural form of the 
Hamiltonian has on the presence or absence of a second 
order phase transition in models of the Dicke type, we 
study the general class of Hamiltonians of the form 

(2.1) 

Throughout, h = h (u, v) is a function of the two three
component quantities u= (u3, u., uJ and v = (v3, v., v.), 
The operator hQ is obtained from the function h through 
the operator substitutions indicated in Table I, and sub
sequent symmetrization, if necessary. The function he 
is obtained from h by the c-number substitutions shown 
in Table I. 

We impose the following assumptions on h: 

1. h is a finite multinomial in all arguments with 
finite coefficients; 

2. hQ is Hermitian; 

3. he has a finite lower bound as a function of !J. E C 
for v in a sphere of radius 1/2; 

4. h(U3,u.,U.;V3,V.,v.)=h(+U3,-U.,-u.; +v3,-v.,-v.); 

5. he assumes its minimum value for !J. = 0 when 
v=O; 

6. Oh/OV3> 0 for u=O, v=O; 

7. h(O; - r, 0, 0) is a monotonic decreasing function 

TABLE I. The operator substitutions and the c-number sub
stitutions which transform h(u, v) to the operator hQ and the 
c-number function he. 

h-hQ =H(a,at;J)jN 

u3 n/N=ata/N 

u. at/m 

u. a/m 
N 

v3 JJN= CZ!aj)/N 
J=! 
N 

v. J.lN= (~aj)/N 
J=! 

N 
v. ·UN = (j"ftaj)/N 

h- he =E(p,r9cp)jN 

jl*f.l = OI*OI/N 

jl* =OI*/m 

jl = OI/fFi 

rcos9 

11* = r sin9 e+i4> 

11= r sin9 e·/4> 

Parameter 
properties 

rE[O,!l 

9E [O,1Tl 

</>E[O,21Tl 

(9, </»ES2 
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for y,=- [O,Ym1. where 1'm is the value of 1''=- [0, ~], where 
this function assumes its minimum value, 

Exa JJ/ /)1 e s: Multinomials h which yield Hamiltonians 
H = Nho previously studied include: 

a. ltD = U3 +0'3 + >--(11,1'_ + If_I',), (Refs.l,2) 

b, hCR=hD + >--'(U,I', +ll_I'J, (Refs. 6, 7) 

c, h CR'A2 = hCR + K(U, + 11.)2, (Refs. 3,8) 

d, h=izD+Q(i- d) +K(~+1'3)2, (Ref. 9) 

e, h = 113 + 110'3 + >--(11,1'_ + U.I'.)], (Refs, 4,10) 

f. II =lt3 +£1'3 +g[>--(u,l'_ + U.1',)]. (Ref. 10) 

No/a/i(JII: Through we set \7~/1 '" ail/aIl3, \7~ '" ail/aI'" 
etc. We also set /"B = 1. 

3. FREE ENERGY 

Lower and upper bounds on the free energy F/N de
termined from 

(3.1) 

can be computed using the method introduced by Hepp 
and Lieb. 11,12 The Hilbert space A = (f2)@N for the atom
ic subsystem is first decomposed into its (2J + 1)- dimen
sional SU(2) irreducible invariant subspaces, Within 
each J-invariant subspace upper and lower bounds on 
the restricted partition function are obtained by replac
ing the irreducible spherical tensor operators YZ(J) in 
ho by their P and Q representatives in the atomic co
herent state representation, 11,13 and replacing the trace 
in the (2J + 1 )-dimensional space by an integral over the 
atomic coherent state U , 15 parameters (e, eI» (c. s2: 

2J+1! Tr (.)--- dn(·) 
J 41T (3.2a) 

Here dn = sine de riel> is the invariant measure on the 
Bloch sphere. U For multinomial h (assumption 1, Sec. 
2) the atomic coherent state P and Q representatives of 
ho are equal to o (l/N), and are obtained simply by 
making the c-number substitutions for V shown in Table 
I. 

The summation over the different J-invariant sub
spaces, including multiplicity Y(N,J) =N! (2J+1)[(N/2 
+ J + 1) ! (N /2 - J) ! 1-1 is estimated by the integral12 over 
y=J/N: 

'!.L2 j 1/2 o Y(N,J)(.)-N d1'exp[Ns(1')]('j, (3,2b) 
JsO or 1/2 0 

The asymptotic logarithmic behavior for Y(N, J) is the 
same as that of the binomial coefficient (N /~zJ) and is 

s(1')= S(1')/N= - W + Y)ln(~ +1') + (t- Y)ln(t - 1')], 

(3.3) 

The remaining trace over Fock space can be estimat
ed using the method of Wang and Hioe, 6 In this method, 
the operator ho is replaced by its P or Q representative 
in the field coherent state16 representation, and the Fock 
space trace is replaced by an integral over the field co
herent state parameter a: 

(3,2c) 
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Here d2
Q =d(Rea)d(Ima) is the invariant measure on the 

harmonic oscillator phase plane. For multinomial h, the 
field coherent state P and Q representatives of ho are 
equal to 0 (l/N) , and are obtained simply by making the 
c-number substitutions for u shown in Table L 

For multinomial h, the Q and P representatives of 
ho in the direct product atomic- coherent-state-field-
coherent- state representations are equal to 0 (1/ N) and 
are simply given by hc. From (3.1), (3,2), and (3.3), 
the free energy F/N is given by a five-dimensional in-
tegral with integrand N3 exp (- {3N4.> )(Il, l' eel> ; (3), The 
asymptotic form of such an integral is easily computed 
by Laplace's method17 

F/N= min4.>(/.L, yeel>; (3) +0 (InN/N) , (3.4) 
tJ.. r8¢ 

(3.5a) 

={E(Il, yerp) - TS(1')}/N, (3,5b) 

Since h is a multinomial and (yecp) belong to a compact 
domain, hc is bounded below (asuumption 3, sec. 2). 
Therefore, the minimum in (3.4) eXists, is well defined, 
and is greater than - 00 for any finite temperature T, 
O<:T<.oo. 

When computed at the values of the parameters Il, 1'ecp 
which yield the minimum value in (3.4) for fixed {3, 

lim [FIN - 4.> (Il , yerp; (311 = 0, 

lim [(flo) - E(Il, reel>; (3)/Nl = 0, 
N- ro 

lim [(S/N') - sty)] = 0, (3.6) 

lim «a/fFl) - Il) = 0, 
N- ro 

lim «oj) - v) = 0, 
N- ro 

ThUS, on the minimal branch 4.>, hc, and s(r) are the 
free energy, the energy, and the entropy per particle 
[ef. (3.5b)1, Il is the intensive order parameter18 for 
the field, and v the intensive order parameter for the 
atomic system, 

Remark 1: The function hc is the classical represen
tative of the operator ho under the quantum-classical 
correspondence effected by atomic and field coherent 
state representations. From (3.5) and (3,6) it is clear 
that the construction of the free energy F/N described 
above amounts simply to making the quantum-classical 
mapping ho - hc, and adding as entropy term the loga
rithm of the SU(2) multiplicity factor Y(N,J). 

Remark 2: To simplify the computation of the mini
mum in (3. 4), either the field parameters Il, Il * or the 
atomic parameters (reel» may be eliminated, When the 
field parameters are eliminated the resulting expression 
reduces to that obtained by Hepp and Lieb12 using atomic 
coherent states14 alone, When the atomic parameters 
are eliminated the resulting expression reduces to that 
obtained by Wang and Hioe6 using field coherent states16 

alone, 

Example: For the Dicke Hamiltonian (example a, Sec. 
2) 
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of.> (Jl , rl3rp; i3) = Jl *Jl +Ercosl3 

+ ;\.r sinl3(Jl *exp(- irp) + Jl exp(ief») 

- i3-1 S (1'). (3.7a) 

Eliminating Jl, Jl* results in [cr. Ref. 12, Eq. (2.12)1 

Eliminating (reef» results in [cf. Ret 6, Eq, (27)] 

4. PHASE TRANSITIONS 
(3. 7~) 

The potential of.> (Jl , reef>; i3) is a function of the five real 
state parameters Jl, (reef» and the single control param
eter i3. At any temperature /3'"1 we define the critical 
points of of.> as the set of points in the five- dimensional 
state parameter space where the differential of of.> is 
zero, At fixed temperature the critical points are either 
isolated or form isolated submanifolds on which a gauge 
symmetry group acts transitively, Each isolated solu
tion set Jl(I3), v(l3)=r(l3)sinl3(l3)exp[- i¢(I3)] is called a 
critical branch. 8 

The critical points at which the Hessianl9 of of.> is non
singular are called normal, nondegenerate, or Morse 
critical points. 19 Non- Morse critical points are isolated 
along any branch consisting of an isolated critical point 
at fixed i3. This is also true, with minor modifications, 
for critical branches consisting of an isolated 
submanifold. 

According to Thom' s theorem, 20 for a potential de
pending on an arbitrary number of state parameters but 
only one control parameter, the generic non-Morse 
critical point is the A2 or "fold catastrophe, ,,21 At such 
a critical point two critical branches coalesce and dis
appear as a function of decreasing (or increasing) con
trol parameteL From another point of view, one critical 
branch "folds over" at the A2 critical point to become, 
in its continuation, the other critical branch,22,23 

However, if the potential has a symmetry which re
moves odd terms in its Taylor series expansion about 
some critical branch, the A2 catastrophe is suppressed 
and the generic catastrophe along that particular branch 
is the A3± or "cusp catastrophe." At such a non-Morse 
critical point, a new critical branch bifurcates from 
the original branch, which suffers a changeover in its 
stability type as the control parameter passes through 
its critical value i3e • If the original branch is stable for 
T' Te, it is unstable for T < Te, and the bifurcating 
branch is stable or unstable depending on whether the 
catastrophe is A3+ or A 3_ [cf. (6.8) and (6.9) J. The A3+ 
catastrophe is isomorphic to the Ginzberg- Landau 
potential. 24 

A phase transition occurs at i3e if the global minimum 
of of.> jumps from one critical branch (Jl, rl3¢; i3), to an
other (Jl, reef>; (3) J at f3c' The transition is first order if 

(4.1) 

otherwise it is second order. Second order phase tran-
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sitions occur when an A3+ catastrophe occurs8 on a cri
tical branch which is globally stable for T> Te. 

From the invariance of he under the symmetry Jl 
- - Jl, v - - v (assumption 4, Sec. 2) we see that Jl = 0, 
v=O (13=0 and 13=7T) are critical points for all i3. Fur
ther, the symmetry forbids the A2 catastrophe along 
both these branches. Therefore, second order phase 
transitions are possible from either of these branches, 
but from no other critical branch, since no other sym
metries are assumed for h, 

In the high temperature limit the entropy term in (3.5) 
becomes more important than the energy term. As a 
result, the minimum of cI> is given by r - 0 as i3 - O. To 
determine the values of the parameters Jl, reef> which 
minimize cI> in this limit, we expand cI> in increasing 
powers of l' about 1'= O. The leading term, not contain
ing 1', is h(u, v), v = O. This is minimized at Jl = 0 (as
sumption 5, Sec. 2). The term linear in l' can contain 
terms linear in v3, but the v. terms must be multiplied 
by odd powers of 11". As a result the term linear in l' is 
uniquely V'~h(O, O)r cos 13. This is minimized at 13 = 7T since 
V'~Jz(O, 0) 0 (assumption 6, sec. 2). The critical branch 
which minimizes cI> at high temperature is Jl = 0, 13 = 7T, rp 
arbitrary. Along this critical branch the value of r(13) is 
obtained by minimizing cI> according to 

0= _ V'V lz +! I (1 + 21') 
3 i3 n 1- 2r . (4.2) 

The derivative is evaluated at u = 0, v = (- 1', 0, 0). 

The model Hamiltonian (2. 1) exhibits a phase transi
tion if the global minimum of cI> leaves the thermal 
branch. In general, nonlocal jumps from one branch to 
another must be investigated for each model Hamiltonian 
separately. However, transition from the thermal branch 
to a bifurcating branch is a local phenomenon. It is suf
ficient to look for a changeover in stability along the 
thermal branch, 

Stability of the thermal branch is investigated by ex
panding cI> in powers of Jl, Jl* and 6, 6*, where 6= (13 
- 7T) exp(- ief». In terms of the matrices Att = (Jl *, Jl), 
Dt = (6*,6) and their adjoints, the second order term in 
this expansion is 

~MtI2V'~hM + tDtI21'VshD 

+ ~MtAM - MtrBD + ~Dtr2CD. (4.3) 

Here A, B, Care 2 x2 matrices composed of second 
derivatives of h with respect to u, v, e. g. , 

[

VUV'Vh VUVV!.J [ VV ] [VV tJ B = + • +" =. • h. 
V'~V'~h V'~V':,h V'~ V' ~ 

All derivatives are evaluated at i3 on the thermal branch: 
Jl({3)=O, (I(f3)=7T, ¢({3)=undetermined, r({3) determined 
by (4.2). 

Eliminating either Jl, Jl * or 6, 6* from (4.3) leads to 
the following expressions for the quadratic term (4.3); 

(4. 5a) 

or 

(4.5b) 
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Stability on the thermal branch is determined by in
vestigating the eigenvalues Yt (Y), 'Y2 (y) of either of the 
matrices in [ I. Both eigenvalues are positive for y- 0' 
and each has a finite number of zeroes. Let Y c be the 
smallest positive zero of either of the eigenvalues 'Yi (r). 
Then there can be a second order phase transition if 
)"c C::. (0, J"m). The parameter r actually assumes value Yc 

(assumption 7, Sec. 2). Without this assumption, r can 
"jump past" re along the thermal branch, and by so 
doing, bypass the non-Morse critical point, the bifurca
tion, and the second order phase transition altogether 0 

In fact, assumption 7 can be relaxed simply to the re
quirement that y pass through value Yc at some critical 
temperature f3c • 

The gap equation for the critical temperature f3e is 
simply obtained by setting r = Y c in (4.2), The Hepp
Lieb gap equation immediately results: 

1 1 f3 v 0 rc=2tanh2 c'V3h, U= , v=(-rc,O,OL (4,6) 

SU!IIlIIary: From the preceeding analysis it is possible 
to formulate necessary and sufficient conditions for the 
existence of a second order phase transition in models 
(2.1) of the Dicke type obeying assumptions 1-7, Sec, 
2. 

1. The first positive zero for either determinant in 
(4.5) occurs for rc c (0, r m), where r m is defined in as
sumption 7, Sec. 2; 

2. A first order phase transition does not occur at a 
temperature T Te, where Te is defined by (4,6L 

EX(l11lpl (': F or the Hamiltonian of example c (Sec. 2): 

'V3=1, 'V~=(, A=2K(I2+ax), 

B = A12 + A'ax , C = 0, 

'Yl (1') = ~~ - 1-(A + A,)2/ (1 + 4K), 

'Y2(r) = ~(- Y(A - A'f. 

This Hamiltonian has been studied extensively, 3,8 For 
A' = A, the only zero occurs for 2rl =dl + 4K)/(2A)2. The 
Thomas-Reich-Kuhn sum rule requires (2A)2/~(1 +4K) 
< 1. 3 Since 1'1 has no zero in the interval [O,~], there is 
no second order phase transition. For A' = 0, 'Y2 has a 
zero at 2rz=dA2, Thus, for A'=O a second order phase 
transition is possible at a critical temperature deter
mined from 1 = (A2/d tanhif3~, contrary to the claims 
made in Ref. 3. 

5. CANONICAL KERNEL 

If there is a second order phase transition, then the 
only terms of h which are important for determining the 
critical temperature are those appearing in (4.5). Since 
all derivatives in (4. 5) are evaluated at U = 0, v 
= (- r, 0, 0), it is sufficient, to determine the critical 
temperature, to reduce an arbitrary multinomial h to 
its canonical kernel 

hCK =u3!1 (1'3) + h(V3) + tut AU + utBV + tvtcv, (5.1) 

Here U=col(u_,u+), ut=(u+,uJ, A, B, Care 2X2 matrix 
functions of li3, and It. 12 are functions of the single va
riable 1'3' Then the value of l' for which there is a 
changeover of stability on the thermal branch is deter
mined from 
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(5.2) 

The functions and matrices in (5. 2) are to be evaluated 
at 1'3 = - r. The critical temperature is determined from 
(4.6). 

Example: For example d (Sec. 2), 11 = 1, 12 =~V3 
+Q(!-v~)+K(t+V3)2, A=C=O, B=A1z, and (5.2) re
duces to 

det[~(~ + K + 2r[ Q - Kl)12 - n 212] = 0, 

1'm=min[~'2u<+_KQJ, dKO, K-Q? 0, 

~(~ + K) 
YC=A2 +(K_Q) • 

There is a phase transition if Y e < 1/2. 9 

Example: For example e (Sec. 2), the canonical kernel 
is 

h CK = U3 + 1(~v3) + AI' (~v3) ut 12 V. 

In the special case I(x) =x + O!x
2 

(O!:' 0) 

. (1 1) 
Ym=mm 20!~ '2 . 

The smallest positive root of (5.2) is 

Ye=4~E[I-(1- 4~tr!2l 
There is a second order phase transition ifl0 

4(aE)(dA2) < 1 

(QE) + (dA2) < 1 

and QE? 1/2, 

and O!E '" 1/2, 

Example: For example f (Sec. 2), the canonical kernel 
is 

hCK = u3 + El'3 + Ag' (0)Ut1z V, 

At the critical temperature, this model is equivalent to 
a Dicke model (example a, Sec, 2) with coupling con
stant Ag' (0). 

Remark: The canonical kernel h8K of an arbitrary hQ 
is the inverse operator image, under the quantum
classical correspondence, of the 2- jet25 of he around 
IJ.=O, v=O. 

6. DISCUSSION 

We now discuss the three recent studies3- 5 of the 
structural stability of the phase transition under a change 
in the functional form of the Dicke Hamiltonian. 

1. Rzazewski, W6dkiewicz, and Zakowicz3 studied the 
Hamiltonian hCR+A2 (example c, Sec. 2) with A = A', On 
the baSis of physical arguments involving the Thomas
Reiche-Kuhn sum rule, they showed that, for this par
ticular model a phase transition did not occur. They also 
claimed their results were valid for A' = 0. This claim 
is incorrect, 8,26 as was shown in the Example of Sec. 4. 
Since resonant and nonresonant atom-field interaction 
terms are expected to couple to the thermal bath vari
ables with different time constants or even through dif
ferent relaxation mechanisms, it is expected that A' 
«A for the description of any two-level system in therm
al equilibrium with a single field mode. 
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2. Gambardella4 studied a class of nonlinear exten
sions of the Dicke model obtained from the function 
h(u, v) =us + [t(u, NV)/N]. The lack of a phase transition, 
except in the case of the Dicke model itself, can be 
tracedlO directly to the inhomogeneous structure of the 
nonlinear extensions which were considered. 

3. Provost et al. 5 studied the model obtained from 

(6.1) 

In this model the terms c.u. and c.u. represent inter
actions between the field mode and external classical 
currents. With these extra terms (6. 1) no longer obeys 
the symmetry assumption 4 (Sec. 2). Therefore, the 
generic non-Morse critical point is the A2 catastrophe, 
and no second order phase transition is possible. Pro
vost et al. 5 showed that there is no phase transition if 
c,,* O. 

A second order phase transition is possible when the 
symmetry breaking terms are added to a model Hamil
tonian without the gauge invariance of the Dicke model, 
e. g., Example b, Sec. 2. However, the bifurcation is 
nongeneric2o,22 and can occur only under very special 
circumstances. Writing u* = (u,,± iu)/12 and similarly 
for v., c., the function h can be decomposed as follows 

h=us+EVs+Px+Py, 

Px = (x + x')uxvx + c,cux' 

Py = (x - X')uyV y + C yUy. 

If c" = 0, h retains a reflection invariance under 

(6.2) 

(6.3) 

If, in the absence of currents, it is possible for the 
branch ux*O, v,,*O to bifurcate from the thermal branch 
at a higher temperature than the branch uy * 0, v y * 0, 
the addition of the particular (nongeneric) current with 
Cx = 0 will not destroy this bifurcation. 8,26 

The effect of including linear terms of the form c .u. 
+ c.u, on the bifurcation diagram is summarized in Fig. 
5.7 of Ref. 27. Thompson and Hunt28 discuss other con
sequences of the structural instability of the bifurcation 
in the cusp catastrophe in the presence of linear sym
metry breaking terms. 

In addition to the three extended Dicke models which 
study the structural stability of the phase transition, 
three other model Hamiltonians have been studied which 
do not satisfy all assumptions 1-7 (Sec. 2) but which 
nevertheless possess second order phase transitions. 
Each of these three models involves multiple boson 
processes. 

4. Hamiltonians describing double photon emiSSion 
and absorption processes are obtained from the functions 

h2=US+EV3+X(U~V.+ u:v.), 

h1'1 =W1US + W2 tS +Ev3 + X (u.t,v. +u.t.v,). 

(6.4a) 

(6.4b) 

The Hamiltonian obtained from h2 describes absorption 
and emission of photons into the same mode; h1,1 de
scribes processes involving two different modes. For 
both functions in (6.4), the canonical kernel is obtained 
by setting X::::: O. The absence of interaction terms in-
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dicates the absence also of phase transitions. Never
theless, both models can exhibit18 second order phase 
transitions for X sufficiently large. This comes about 
because the Fock space trace leading to the partition 
function is restricted. For (6.4a), the Fock space trace 
involves only states with an even or an odd number of 
photons. In the case (6.4b), the Fock space trace in
cludes only those states in which the difference in the 
photon number in modes t, u has a constant integer val
ue. The methods for computing the free energy present
ed in Sec, 3 are applicable only when the Fock space 
trace is unrestricted. 

5. Thompson29 has proposed the following model to 
describe phonon aided photon processes: 

h =us + nts + EV 3 + x(u,v. + u.v,)(l + Kf. + K*tJ. (6.5) 

Here u, v refer to the photon mode and the atomic sys
tem, as usual, and t refers to the phonon mode. The 
function h is not invariant under the expected symmetry 
group: 

u3, V3, ts - +us, +V3, + Is, 

U., 1'., t. - - It., - v., - f •• 
(6.6) 

Instead, hand <P are only invariant if t .. - + t •. Thus the 
order parameter t. is an even function of the order pa
rameters u" and v •• The canonical kernel of (6.5) is ob
tained by setting K = O. As a result, there can be a sec
ond order phase transition at the usual Dicke 
temperature. 

The potential <P can easily be computed in terms of 
Jl, Jl *, 7, r* and (r8rp). Eliminating the photon and pho· 
non parameters leads to a simple expression for the re
duced potential 

. (AX sin8)2 -1 
<P A (r8rp, (3) =EY cos8 - 1 _ n·1(2KX Y siner - (3 s(r). 

(6.7) 

\\ben this is expanded about the thermal branch 8 = 1T , 
the first three terms in the Taylor expansion are (6 
=8-1T) 

<PA(r8rp;{3)=-Er- (3-1 s (r) +(E; _ X2r2 )152 
+ --+-__ ----L.. o~ 

( 
Er X ZrZ (2KX 2rZ'Z) 
4! 3 n . 

At the bifurcation point Y::::: Ei2X Z < 1 and the coefficient 
of 15 4 is 

Therefore, the non- Morse critical point is of type A3+ 

if (2KE/A)2 < n and the phase transition is of second or
der. If (2KelX)Z" n, the catastrophe is of type As_ and 
there will be a first order phase transition for r 1 < e/ 
2X2 and Tl " Te. In fact, it is possible for a first order 
phase transition to exist even if there is no bifurcation 
provided the minimum of <P A (r8rp; (3) occurs for 8 * 1T at 
low temperatures. 

7. CONCLUSIONS 

We have presented a Simple method for writing down 
the free energy FIN for a large class of Dicke-like 
models: 
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C replace hQ by its classical image he; 

2. include the entropy term - Ts(r); 

3. minimize the resulting potential <I> over the atomic 
and field coherent state parameter space. 

The critical properties associated with hQ are then 
easily determined from the potential <1>, constructed as 
described above o First order phase transitions occur 
when there is a nonlocal transfer of stability from one 
critical branch of <I> to another. The phase transition is 
second order if the transfer is locaL A necessary con
dition for the occurrence of a second order phase tran
sition is given in (4. 5). The sufficient condition is that 
a first order phase transition does not occur at a higher 
temperature, The critical temperature for any Hamil
tonian hQ exhibiting a second order phase transition is 
determined entirely from its canonical kernel hgK. The 
gap equation is given in (4 0 6). 

The second order phase transition is remarkably 
structurally stable against changes in the functional 
form of the model Hamiltonian, provided a certain sym
metry (assumption 4, Sec. 2) is conserved. \\hen the 
symmetry is absent, the phase transition is not struc
turally stable and generically disappears. 

The importance of the symmetry is not that it is 
broken at the phase transition (the potential <I> always 
retains the symmetry while the free energy FIN does 
not), but that it suppresses the A2 catastrophe and allows 
the Ginzburg- Landau A3+ catastrophe to occur. 

*Work supported by the U. S. Army Research Office, Durham, 
North Carolina. under Grant No. DAHC04-72-A-0001. 
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A metastable analytic continuation of the Ising model free energy is conjectured to follow from certain 
analyticity properties of the eigenvalues of the transfer matrix. The resulting description of metastability is 
applicable to any system whose phase transition is associated with eigenvalue degeneracy. Motivation for 
the conjectures concerning the Ising model is provided by the study of eigenvalue continuation in several 
simpler systems. 

1. INTRODUCTION 

For finite systems, the partition function gives no 
evidence of metastability. Even if it should happen that 
the free energy, in the thermodynamic limit, can be 
analytically continued to a metastable region, such 
multivaluedness cannot appear in the finite system par
tition function which is entire. We accordingly replace 
the usual thermodynamic functions derived from the 
partition function with other functions which have the 
same thermodynamic limit but which already for finite 
systems have nontrivial multivalued branch and sheet 
structure. The analysis in this paper of the analytic 
structure of these functions is intended both to facilitate 
an eventual rigorous proof of the existence of such an 
analytic continuation in nontrivial models and also to 
provide some new motivation for the physical interpre
tation of the continuation as metastability. 

Phase transitions, long range order and eigenvalue 
degeneracy have long been associated with one 
another. 1,2 The approach to metastability proposed here 
applies to those models in which the free energy can be 
obtained, in the thermodynamic limit, from the mini
mum eigenvalue of some linear operator and in which a 
phase transition corresponds to the asymptotic degen
eracy of that eigenvalue; examples include Ising models 
and quantum field theories with broken symmetry. The 
metastable phase is found in the finite system, accord
ing to our view, by allowing certain thermodynamic 
variables to be complex and then analytically continuing 
a particular eigenvalue from a region where it is the 
minimum eigenvalue to a region where that is no longer 
the case. With the appropriate analytic continuation, the 
eigenvalue thus obtained determines the metastable free 
energy. 

In Sec. 2 we explain our proposal in more detail by 
giving a series of conj ectures for the Ising model. 
These conjectures are motivated by properties of sim
pler models which we present in Sec. 3. The relevance 
of these simpler models to the Ising model is discussed 
in Sec. 4, and finally a general discussion of metasta
bility is given in Sec. 5. 

2. ISING MODEL 

We consider a two dimensional nearest neighbor Ising 
model with energy - J'i'(JI(J j - h'i (JI (where 'i' denotes the 
sum over nearest neighbors and J> 0 is fixed), at tem
perature T. For an 111 Xn lattice with periodic boundary 
conditions, the self-adjoint transfer matrix Ln(ll) de
fined in the standard way, 3 is related to the partition 
function Zm,n(h) by Zm,n(h) = Tr{[Ln(h)]m} and the limiting 
free energy is 

~ . 1 . 1 
k

T =- hm -logZm,n(Il)=-hm-logA~(ll), 
mtn~ 00 l1ln n~ 00 n 

where A~(lz) > A ~(lz);o A~(h) ;0 ••• ;0 A~n (Il);:" 0 denote the 
eigenvalues of Ln(ll) listed in decreasing magnitude (for 
real Il); we define E~ (h) = - (l/n) logA~ (Il). 

It follows from the fact4 that the zeros of Z m,n(h) all 
lie on the imaginary h axis that E~(h) and jO(h) are 
analytic in the right (or left) half-plane of complex h. 
The eigenvector associated with E~(h) is positively 
magnetized for h> 0; our first conjecture concerns the 
analytic continuation of E~ into the left half-plane in 
such a way that the positive magnetization is preserved 
when T is below the critical temperature T c' Since we 
wish the continuation of E~ to cease being the minimum 
eigenvalue of - log(Ln(h))/n, it is necessary that the 
path of continuation avoid the neighborhood of certain 
real values of Il, such as Iz = O. 

Conjecture 1: For T < T c' there are positive constants 
a, T/ > 0 and Yn - 0 such that E~ can be analytically con
tinued to a function, E~(h), analytic and Single valued on 

FIG. 1. Region D(n> (shaded) 
in which E~(h) can be analyti
cally continued according to 
Conjecture 1. 
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Dn={h: Reh > O}u {h: Reh > - a, Yn < jImh j < 17} 

(see Fig. 1). 

En(h) converges uniformly on any fixed Dm as 17 - 00 to 
an analytic functionF(h); r(h) =fo(h) for Reh> O. 

The restriction to I Irnh I < 17 in Dn is due to the fact 
that L n(h+27ri/f3)=Ln(h) (where f3=l/kT) so that any 
singularities occurring near the negative real axis also 
appear near the lines, Imh = ± 2 rrkT. The restric tion to 
Reh> - a is based on the loss of metastability discussed 
below in Property 4. The restriction to I Imh I > Yn is 
partially removed in the next conjecture which analyzes 
the singularity structure of E:(h) near the negative real 
axis. 

Conjecture 2: There exist positive Pn's and 0 =x! (n) 
> xz(n) > ••• > XMn > - a such that E:(h) is analytic and 
single valued on 

Dn={h:Reh>O}U{h:Reh>-a, jImhj <17, jh-Xk(n)j 

> Pn Y k}; in addition, p" - 0 

sufficiently rapidly that p,/mink {Ixk+! (n) - xk(n) I}- o. 
E:(h) can be further continued into {h: I h - xk(n) I ,,; Pn} 
for each k except for a pair of (square root) branch 
points at Xk(n) ± i Y k(n) (IYk(n) I ,,; Pn) connected by a branch 
cut (see Fig. 2). 

The intuitive picture behind Conjecture 2 is that, ex
cept for certain exceptional (real) values of h, the 
eigenvectors of Lh(h), corresponding to E~'s within a 
finite (n-independent) distance from E~, can be naturally 
divided into two groups according to the sign of their 
magnetization (order parameter). As h varies, one set 
of eigenvalues moves past the other much as two stacks 
of chips (of different thicknesses) can be moved vertical
ly relative to each other. The exceptional values of h 
are those for which there would be exact degeneracy 
between one state from each group if there were no 
coupling between the groups. In the presence of 
coupling, no matter how small, the previously degen
erate levels mix strongly resulting in two approximately 
degenerate actual eigenstates, each with a small value 
of the order parameter. Such an approximate (for real 
h) level crossing in an essentially two-level system 
gives rise to a pair of square root branch pOints at the 
location of actual level crossings in complex h. The 
size of the region in h around an exceptional value in 
which level crossing effects are important is determined 

/ 

/ 

FIG. 2. Dn ) according to Conjecture 2 with branch cuts drawn 
to indicate where one can leave the metastable sheet. In parti
cular the sheet reached through the cut at h = 0 takes one to the 
stable ground state for h< O. The circles are {h: I h-xk(n) I 
~pJ. 
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by the matrix element of the relevant symmetry break
ing operator between the two states or equivalently by 
the amount of "wrong" magnetization found in an eigen
state predominantly of the "right" magnetization. In or
der for the foregoing picture to be valid, it is necessary 
that the spacings in realll between (approximate) level 
crossings be much larger than the size of the level 
crossing regions themselves. 

Conjecture 2 describes our prescription for following 
the bottom chip of one stack as it passes by successively 
higher chips of the second stack. The points xk(n) cor
respond to approximate level crossings and our method 
of analytic continuation is to make a short excursion into 
the complex plane each time the positively magnetized 
metastable eigenfunction is about to have one of these 
crossings with a state of negative magnetization. The 
conjecture that pjmink{ IXk+l (n) - xk(n) i}- 0 is the as
sumption that our picture of independent stacks of chips 
is correct for most real values of lz (with liz I < a). 

Analytic continuation through one of the branch cuts 
of Fig. 2 would correspond to an adiabatic (infinitely 
slow) variation of h while our choice of analytic contin
uation around the branch cut is analogous to the "fast" 
approximation of quantum mechanics; it preserves the 
eigenvector rather than the eigenvalue label and thus 
E~(h) for real negative h away from the level crossing 
regions will equal E~(1z) with k dependent on h. It Con
sequently is natural to associate E~ (h) with a "super
cooled" or "superheated" metastable state which is 
formed and exists for times short in comparison to the 
relaxation time of the system so that the system tends 
to retain its former state (sign of magnetization) rather 
than to adiabatically move to the absolute minimum of 
free energy. 

Before stating the next conjecture, we note that Con
jecture 2 could be weakened to the extent of allowing 
more branch points (of perhaps higher than second or
der) in each level crossing region, {h: I Ii - xk(n) I ,,-, Pn}, 
without seriously affecting our picture of metastability. 
Of course, in that case, the two-level systems desc ribed 
above would be replaced with multilevel systems. 

The relation of the next conjecture to our previous 
ones and its possible invalidity will be discussed in more 
detail in Sec. 5 below. 

Conjecture 3: For any - O! <x~· 0, limh_xf+(ll) exists, 
independent of the (complex) path along which It - x; rUz) 
is analytic and single valued on {1z : Reh > - a, ; Imll i < 11} 
including It == O. 

We propose some further properties of f+(h) which, 
while not essential to our basic picture of metastability 
and less strongly implied by our later models, never
theless may shed more light on the structure of 
metastability. 

Property 4: The first singularity of r(lz) on the nega
tive real axis corresponds to the asymptotic vanishing 
of n times the gap between E~ (Il) and the energy of the 
first excited metastable state [obtained by an analytic 
continuation of E~ (Il) from large positive hJ. This sin
gularity thus corresponds to infinite correlation length 
in the metastable state, a characteristic of second or-
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der phase transitions. The location of this singularity 
as a function of T defines the spinodal line, hs(T), 
where metastability is lost; hs(T) - ° as T - T c' 

Property 5: The functions r(h), defined for h > hs and 
the corresponding r(h), defined for h < i hs I [by analytic 
continuation of fO(h) from h < 0] are branches of the 
same analytic function. The two branches can be con
nected by a (symmetric) analytic continuation path 
which winds around the spinodal singularities at h = hs 
(on the r sheet) and h = I hs I (on the r sheet); on the 
"connecting" branch there are no r-eal singularities for 
hs < h < Ihsl. 

Property 5 is suggested both by mean field theory 
models (see Sec. 3 below) and by the fact that, barring 
special factorization properties, all eigenvalues of the 
transfer matrix should be branches of a single analytic 
function of h. In the mean field models, there is a 
unique "connecting" branch which corresponds to a local 
maximum of the free energy; it seems that in the Ising 
case this uniqueness is lost. 

3. MODELS 

We present a series of models bearing varying de
grees of resemblance to the Ising model and susceptible 
to varying degrees of explicit solution and rigorous 
analysis. 

Each model consists of a sequence of (finite system) 
Hamiltonians, Bn(h) =Bn(O) + hS, with an infinite system 
(stable) free energy, fO(h) = limn~ ~E ~(h), where E~(Jz) 
< E~(Jz) ~ E~(ll) -% ••• denote the eigenvalues of Hn(h) (for 
real h). Hn(h) is the analog of - (l/n)log[Ln (h)] for the 
Ising model with Il the external magnetic field and S a 
symmetry breaking term. Zm n = Tr{exp[ - mnHn(h)]} is 
the analog of the Ising partiti~n function and f O 

= limm• n• ~(- 1 /nm) 10gZ m.n' The first two models are 
further similar to the ISing model in that the zeros of 
Z m.n(Jz) are pure imaginary5.6 so that fOUl) and E~(Jz) are 
analytic for Reh > ° (or Reh < 0); they also share with 
the Ising model the feature that ground states for differ
ent temperatures (or different values of Il) become 
asymptotically orthogonal as n - 00 • 

In each case an explicit formula for fO(h) implies that 
f O can be analytically continued from lz> ° past h == 0; 
the continuation f+(h) determines the metastable free 
energy for h < 0. Our main interest concerns the analy
ticity properties of the eigenvalues E~(h) and the validity 
of the analogs of the conjectures of Sec. 2 for these 
models. 

A. The Lipkin model 

Lipkin et al. 7-10 studied the "phase transition" asso
ciated with the onset of deformation in nucleii. Starting 
with a many-body problem they arrived at a Hamiltonian 
equivalent to the following: 

Bn(lt) = - (l/2n2)J~ - (l/n)T J x - (l/n)hJ .. , (3.1) 

where J x , J" d z are standard quantum mechanical spin 
operators acting on the (2n + I)-dimensional space of 
eigenstates of J2 == J; +J~ +J~ with eigenvalue n(n + 1) 
and T is a parameter playing the role of temperature. 
For T < 1 there is a phase transition at h = 0, as n - 00, 
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with a breaking of the symmetry described by the opera
tor exp(i1TJy). 

Using results of Lieb, 11 the limiting free energy can 
be written in terms of an integral over the surface of a 
sphere, 

fO(h) = lim (1/n2) 10gZn,n 

2. 1 
= - lim (1/n 2) log J dq, J dz 

n-~ o-t 

Xexp[n2(z2/2 +T(1_z2)1/2 cosq, +hz)]. 

It follows that 

f°(lt} = inf Vh(z) (3.2) 
-1 .... "1 

with 

(3.3) 

For T < 1 and sufficiently small h, Vh has two local 
minima; the global minimum (for h:t- 0) is the one with 
z/h> 0. The analytic continuation of f O to f+ clearly 
exists withr being the value of V h at the local minimum 
with z > 0. The first singularity encountered as h moves 
along the negative real axis occurs when this local mini
mum disappears, namely at 

hs=_(1_T2/3)3/2 (==-z!), 

marking the end of metastability (the spinodal line). Con
jecture 3 and Property 4 of Sec. 2 are thus immediately 
verified for this model; Property 5 is also valid with the 
"connecting" branch of the free energy equal to the value 
of Vh at its local maximum. 

We now turn to the eigenvalues and eigenfunctions of 
Bn(lz) so as to investigate the analog of Conjecture 2. 

To study E~(lz) near It == 0, we define vectors >11(111,0) 
(m = - n, - n + 1, •.. , n) Which are normalized eigenvec
tors of Js = exp(- iO Jy) Jz exp(iO J y), J s>l1(1J1, 0) = 111>11(111,0), 
and seek 0 so that >11(111,0) is approximately an eigenvec
tor of Bn. Writing A (111, 111') for (>I1(1I1',0),A>I1(m,0», we 
have 

(>11(111',0), H>I1(m, 0»=- 6mm.{(1/2n2)111 2 cos20 +T(1II/n) sinO 

+ h(1II/n) cosO + (l/2n 2) sin20[n(n + 1) - 1I12]} 

+ [Jx (1II, III ')In] {sinO cosO[ (III + 11/ ')j2n] 

- T cosO + h sinO} 

- (l/Bn2)sin20(J} +J:)(1II,1II'). (3.4) 

If 1/1 =n - 0(1) as n - 00, off diagonal elements in (3.4) 
vanish to order lin if we demand that 

sinO cosO - T cosO + h sinO = 0. (3.5) 

This equation is identical to that for the location of the 
minimum of (3.3) (with z =cosO), while the diagonal 
element of (3.4) yields, as 11 - 00, the same f O (It) as 
given by (3.2). We thus regard I/i(n, 01) and >11(11, O2) (for 
It * 0) as (approximately) the stable ground state and 
"metastable ground state" of Hn where 01 and O2 are the 
two solutions (for T < 1 and small ; h :) of (3. 5) corre
sponding to the global and local minima of V h • 

We now consider an idealized two level system 00-
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tained by restricting Hn(h) to the space spanned by 
{>Ir(n, B+), >Ir(n, 71 - B+)} for small I hi j here B. = sin-IT 
< 71/2 corresponds to the minimum of Va with z > O. The 
2 X 2 matrix approximation to H n(h) is 

[ _ (1 + T2) + 0(1..\1 /1 0) _ (0 a) _ h (COSB+ 0), 
2 nJJ \0 1 a 0 0 - cosB. 

where a == (>Ir(n, e.), [J~2n2 + T Jxln + hJ jn] >Ir (n, 71 - e.) 
can be calcula ted using rotation matrices l2 and is ex
ponentially small in n: 

a '" d~n(71 -2e.) = (sine.)2n:::: exp[ - (- 2 logT)n] 

(to zeroth order in h). 

The relevant h dependence of E~(h) and E~(h) near h 

= 0 is approximated by the eigenvalues of 

(
0 a) /(1 - T2) 0 ) 

Wz=- a 0 -h\ 0 _(1_T2)1/2' 

where we now consider a to be a fixed, small, h-inde
pendent constant. The eigenvalues of W2 are EO 

=: - [a 2 + h2(1- TZ)]1/2 and EI = - EO' In place of a level 
crossing for real h, there is at h = 0 an eigenvalue gap 
(EI - EO) of size 2a and a level crossing at h = ± ia/ (1 
- T2)lIZ. For rea 1 h» a, the eigenvectors are 
approximately 

( 
1 \ _ (- a/2h(1 _ T2)1I'). 

uo'" a/2h(1 _ T2)1/~' u! - 1 ' 

for real h« - a, the formulas are interc hanged. Thus 
as h varies along the real axis, U o changes from one 
polarity [corresponding to >Ir(n, e.)! to the other [corre
sponding to >Ir (n, 7T - e.)] with an assoc iated change in the 
"magnetization, " - aEo/ah. 

A central theme in this paper is the prescription for 
continuing an eigenvalue into the complex plane so as to 
minimize the change in the corresponding eigenvector. 
In the 2 x 2 matrix case, the analytic continuation goes 
around the branch points at h = ± ia/ (1 - T2)1/2, i. e., we 
fix the sheet of the continuation by connecting these two 
points by a branch cut (see Fig. 3). The eigenvalue 
f.(h) defined on this sheet starts on the positive real 
axis as EO and ends on the negative real axis as EI' but 
the corresponding eigenvector u. retains (for I hi» a) 
the form 

U.;::(a/2h(1 ~ T2)1/2) 

E (h) 

ia 

Reh 

,.I'j":i'.~" , 
'" ')<; '\ 

I I 

FIG. :1. Two level system eigenvalue crossing. (a) E (h) for 
real h. (b) Passage around the branch point in the complex h 
plane. 
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~ En(h) various levela 

------~~~~----~~~~~~~~~~~ h 
(in units 
of lin) 

stable ground state 
for h>O 

FIG. 4. Near level crossings for real h. The "metastable 
level" is the analytic continuation of >It (n, e) around the 
crossings. 

As n - 00, the size of the necessary excursion into 
the complex 11 plane, being proportional to a, tends ex
ponentially to zero. In order to justify our two-level 
system approximation, we must show that there is a 
range of Ih i » a in which levels other than >Ir(n, e.) and 
>Ir(n,71- 9.) can be ignored. This follows from the fact 
that the energy difference between (e. g.) >Ir(n, e.) and 
>Ir(n - 1, e.) is (1 - T 2)/n + 0 (l/n 2), which is exponentially 
larger than a as n - 00. 

The level crossing at !z=O is just the first of many. 
As we move to the left on the negative h axis the meta
stable level [approximately >Ir(n, e.)] decreases in energy 
while the first excited state of opposite polarity [approx
imately >Ir(n - 1, 7T - e.)] increases until at some negative 
value of real h on the order of l/n there is a second ap
proximate level crossing analogous to the one described 
above between >Ir(n, e.) and -v(n, 11 - e.). Our picture of 
successive near level crossings for lz real and negative 
is shown in Fig. 4. In each case, states of opposite 
polarity (sign of the expectation value of J z) do not signi
ficantly mix unless their energies are close on the order 
of the matrix element of 5 =Jz connecting the states. 
This matrix element is analogous to the 0' of the first 
crossing and decreases exponentially with n so that each 
level crossing is well approximated by a two-level sys
tem as above. 

As n - <Xl the number of crossings needed to continue 
to [inite h also tends to infinity. Our earlier approxima
tion for the "stable" excited states is not valid since 
1-m/n does not approach zero. Instead we note thal as 
n - <Xl the eigenvalue equation for H has the form of a 
difference approximation to the differential equation 

-:::2-- (1- z2)- + Vh(z)I/J(z) + Vn(z) 1/J(z)=Enl/J(z), (3.6) 1 a ~ a1/!) - , , 
n az az 

where z = min, III is the eivenvalue of J z • - 1 " Z . 1, 
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Vh(Z) is given by (3.2), and V.(z) =O(l/n). This large 
n approximation is analogous to the WKB approximation 
in quantum mechanics with lin playing the role of 
Planck's constant. In the next model, we consider the 
WKB limit for an anharmonic oscillator and the qualita
tive conclusions obtained there apply here as well. 
Namely, the spacing between approximate level cross
ings (in Fig. 4) remains of order lin, even for finite h, 
while the size of level crossing regions is of order e-'; 
thus the two-level system approximations remain valid 
and the combination of Figs. 3 and 4 leads to Fig. 2-
i. e., the validity of Conjecture 2. The absence of addi
tional singularities away from the negative real axis 
(Conjecture 1) is based on a simple argument concerning 
polarization which we give below for the anharmonic 
oscillator. 

B. The anharmonic oscillator 

In this model, we take 

1 d2 X4 bx2 

H (h)=-- -:;::r +- -- -hx 
• 2n dx 4 2 ' 

acting on L2(JR, dx). This Hamiltonian arises as an ap
proximation to Kac's model2 of a one-dimensional ferro
magnet with long range interaction. It may also be 
thought of as a simple model for symmetry breaking in 
cp4 quantum field theories. It is clear that 

fO(h) == inf Vh(x) , Vh(x) =h4 - !bx2 - hx (3.7) 
.. «I<X<0Cl 

so that a phase transition occurs at h = 0 (for b > 0) cor
responding to a breaking of the x - - x symmetry. For 
b > 0, fO(h) can be analytically continued from h > 0 past 
the origin to give r (11), equal to the value of Vh at its 
right-hand local minimum. The spinodal line is hs 
=- 2(bI3)2/3. The spinodal points h=± Ils are square 
root branch points and the branches of f+(h) and the 
corresponding f-(h) are connected by an "unstable" sheet 
corresponding to the value of Vh at its local maximum. 
At b = 0, these two square root branch points coalesce 
to form a cube root branch point at lz = 0 (the critical 
point), which then separates again into two square root 
branch points for b < 0 (above the critical "tempera
ture"), except that these are now located on the imagi
nary h axis. 

Again for this model, we are primarily interested in 
the validity of the analogues of Conj ec tures 1 and 2. We 
base our arguments on the WKB approximation since this 
is equivalent to the n - 00 limit. The picture of two mov
ing stacks of chips, described in Sec. 2, corresponds 
here to two groups of WKB eigenvalues-one group for 
each of the two "allowed" regions of V h (for b> 0 and 
small h) calculated as though the other region were 
absent. In this approximation there could be exact de
generacy between eigenfunctions in different regions. 
The degeneracy is broken because of the exponentially 
small (in n) tunneling probability between the regions 
(this has been rigorously shown for the first' level 
crossingt3). The spacing between level crossing regions 
as h varies along the negative real axis is seen by WKB 
calculation to be ° (l/v'n). 

Thus Conjectures 1 and 2 and the corresponding pic-
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tures of Figs. 2 and 4 are valid provided that no singu
larities occur in the right half-plane away from the nega
tive real axis. To verify this, we note that in the "inde
pendent wells" approximation discussed above, if we 
take h =ht +ih2 with Ih2 i much greater than the tunneling 
probability, the energy eigenvalues of each well develop 
an imaginary part approximately proportional to h 2<x), 
where (x) denotes the expected value of x in the corre
sponding eigenfunction. Since (x) has different signs in 
the two wells, the (real h) degeneraCies between levels 
from different wells is effectively broken and no degen
eracies between levels of the same well can develop 
since the real parts of their energies are nondegenerate 
(away from the spinodal pOints). 

C. The square well model 

On the spaceL 2([-1T,1I"J,dx), let 

1 d2 
H.(h) =-- -;Fl + A1i(x) - h sgnx 

n x 
(3.8) 

with Dirichlet boundary conditions at x = ± 11" and A> O. 
This Hamiltonian serves as a crude approximation to the 
anharmonic oscillator Hamiltonian discussed above, as 
well as to the Lipkin model via Eq. (3.6); the A1i(X) term 
serves to separate the square well into two "allowed" 
regions and S=sgnt" is the symmetry breaking term. 
Despite its simplicity, this model possess, as we shall 
show, most of the main features of the more complex 
models of phase transitions, including, as n- 00, two 
(asymptotically) independent sets of eigenvectors with 
all level crossings occurring in a small neighborhood of 
the real lz axis. It thus provides a useful model of the 
relation between metastability and eigenvalue 
continuation. 

The global analytic structure of the free energy is 
trivial for this model in that fO(lz) = - II , so that r (h) 
== -lz and r (lz) =h. There is no spinodal point lzs so that 
f+ andf- are entire functions and are not branches of a 
single function; thus Property 5 of Sec. 2 is invalid and 
this model is most analogous to an ISing model at zero 
temperature whose free energy is also - lz • 

For this model, we can rigorously prove Conjecture 1 
and parts of Conjecture 2 for E~(lz), the minimum eigen
value of the Hamiltonian of (3.8). 

Theorem: For D any open bounded neighborhood of 
the origin in complex h space, there exists K:> 0 and 
functions E~(lz) with the following properties: 

(i) E~(h) is defined and analytiC on D\Bn(K) , where 
B.(K) = {h: ; h - (1 - }J/2)/2n 'KIII 2/n 2 for some }J/ 

=1,2,3, ••• }, 

(ii) E~(lI)=E~(1t) for h> l/2n, 

(iii) E~(lz) - - h uniformly on compact subsets of 
D\(- 00,0]. 

Proof: Let w =nE~(lz) - 1 + nh and z = 2nh; then, for 
nit > ~, w is the unique solution of the eigenvalue 
equation 

v'W+T COt1Tv'W + 1 + YZ - w - 1 coth1Tv'z - 11' - 1 + nil = 0 

(3.9) 
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such that - 1 < w < O. This equation may be rewritten as 
a fixed point problem, 

W=G(W,z)=g(-~ F(Z-W)), (3.10) 

where g(z) =[1 + (arctanz)/1TF - 1 and F(z) =[1 + f(z )/nA]-1 
with f(z ) = ";z - 1 coth1T..;z:-T. Now f(z) is analytic exc ept 
for simple poles at {I - m 2 : m = 1,2,3, ••• }, and it can 
be shown by simple estimates that, for any bounded jj, 
there is a K' > 0 such that If (z) I ~ nA/2 for z/2n 
E jj\Bn(K') and n sufficiently large. It then follows that 
for large n there exist positive I) and K so that if 
Iwl<l)/nandz/2nED\Bn(K)' then If(z-w)l~nA/2, 
G(w,z) is jointly analytic, and IG(w,z)1 <I)/n. We now 
define wo(z) =0, Wk+l(z) =G(wk(z),z), and use some more 
simple estimates to show that wk(z) converges uniformly 
on {z : z/2nED\Bn(K)} to some w(z) which solves (3.10), 
satisfies - 1 ~ w < 0 for real z, is analytic on {z : z /2n 
E D\Bn(K)}, and is ° (l/n) there, thus implying all the 
conclusions of the theorem. 

To investigate the validity of the remainder of Conjec
ture 2, we approximate E~(h) in the neighborhood of 
{(I - m 2)/2n} by expanding COt1T";W + 1 and coth1TY,-z---w--"-:;-l 
about their respective poles; letting u = (1- m 2) - z, we 
have that (3.9) is approximated by 

or 

1 212m2 
-+- +- + --- +nA=O 
1T 1TW 1T 1T(U+W) 

with 

Vn = (1 +n A1T/2tl. 

(3.11) 

For each n the solution W of (3.11) has a pair of square 
root branch points, atu=-vn(m 2-1)±i2mvn; this indi
cates that E~(1z) has square root branch points located at 
(approximately) 

I (1 )1-m
2

.mvn 
1= - vn ~±t n ' 111 =1, 2, ••• , 

which verifies Conjecture 2 of Sec. 1 with xk(n):::: (1- vn) 

x (1 - k2)/2n and Y k(n):::: kvjn. Since in this case Mn 
=O(vn) (i. e., there are O(vn) branch points in a finite 
region of the h plane) we have Pn'" SUPkl Yk(n) I =O(vn vi 
n)=O(l/n3/2 ) while mink{lx k+l(n)-xk(n)i}:::: iX2(n)-xl(n)i 
'" const/n. The reason Pn is not exponentially smaller 
than mink{lxk+l(n)-xk(n) I} as it is in the previous two 
models is that the M(x) barrier does not prevent tun
neling very effectively; to mimic this facet of the other 
models, one would have to take A tending to infinity ex
ponentially fast as n - 00. 

4. RELEVANCE TO THE ISING MODEL 

Do the features of the foregoing models apply to the 
Ising model? The essential elements present in the 
models of Sec. 3 are: 

1. Existence of an order parameter, which is effec
tirely the expectation value of the symmetry breaking 
term S in the Hamiltonian. 

2. Polarization, i. e., a division of the eigenvectors 
into two sets of opposite sign of the order parameter. 
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Hence, as h varies, the picture of two stacks of chips 
in relative vertical motion is applicable. There may 
also be a set of unpolarized states, but these are of 
higher energy. 

3. Smallness of the level crossing region (as the low
est level on one pile crosses levels in the other pile) 
compared to the spaCing (in h) between level crossing 
regions. This justifies the picture that for "most" val
ues of h levels in one stack move independently of the 
other stack. 

4. Depletion of levels and narrowing of the spacing in 
the metastable stack as h approaches hs • 

The polarization is important because, as discussed 
for the anharmonic oscillator, it implies that for large 
enough IImh I there should be no level crossings be
tween levels in opposite "stacks" since the sign of ImE/ 
Imh is approximately proportional to the value of the or
der parameter. The absence of such level crossing in
dicates analyticity away from the negative real axis. 

The actual size of the level crossing region in the com
plex h plane is determined by the size of the matrix ele
ments of S between states of opposite polarity. This in 
turn depends on the amount of "wrong polarity" con
tained in an otherwise polarized state, which is closely 
releated to the tunneling probability for the models of 
Sec. 3. 

The Ising model has an order parameter, the mag
netization. It is reasonable to believe that the eigenvec
tors of the transfer matrix do arrange themselves in two 
stacks; this is known to happen in the thermodynamic 
limit when h =0. A serious question that arises is 
whether element 3 above (or equivalently Conjecture 2 
of Sec. 1) should be valid for the Ising model. 

Our first guess concerning the spacing between level 
crossing regions is that they are on the average of order 
2-n

; this corresponds to the assumption that a finite frac
tion of the eigenvalues of - (l/n) 10gLn(h) lie within a 
finite distance of E~(11) and that they are approximately 
evenly spaced. To estimate the size of the level cross
ing regions, we note that (as for the Lipkin model) it is 
of the same order as the energy gap at the approximate 
(real h) degeneracy. For the approximate crOSSing at 
h = 0, it is known 14,15 that 

E~(O) - E~(O) =O(e-cn
). 

We suppose that crossings at h"* 0 have a similar ex
ponentially decreasing gap except that c is a function of 
h. The results of the previous section, e. g., the square 
well model, suggests that c(h) decreases as h moves 
towards hs • If our guess concerning the 2-n spacing be
tween level crossing regions is correct, then the validity 
of Conjecture 2 demands c'" c(O) > log2 while Property 4 
of Sec. 2 suggests that c(Iz)-log2 as Iz-Iz s or T-T c ' 

A rough estimate for c, along the lines of a similar 
calculation by Kac, 15 suggests that it exceeds log2, at 
least for small T and probably for all T < T c' The cal
culation, in the spirit of the 2 x 2 matrix discussion of 
Sec. 3, involves the transfer matrix Ln(O), restricted 
to the two-dimensional subspace spanned by the vectors 
I' +, V _ corresponding to all spins + 1 or all spins - 1 ; 
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this leads to the estimate 

e -en =O«V., Ln(O)vJ/( v., Ln(O)v.» = e-2nIU• 

Since 2{3e J'" O. 88 and log2'" O. 69, we see that for T < T e' 

2{3J> log2 which supports the contention that c> log2. A 
different calculation, which can be found in the early 
work of Lassettre and Howe, 16 also suggests that c 
> log2 for small enough T. 

5. DISCUSSION 

Metastability has been a focus of controversy since 
the earliest studies of phase transitions. 16-18 First, the 
very existence of a metastable state can be questioned on 
the grounds that, as the system increases in size, the 
decay lifetime tends to zero so that it is problematic 
whether any metastable state can survive the thermo
dynamic limit. Second, there are certain models l9

-
21 

which suggest that the approach to a first order phase 
transition involves an essential Singularity in the thermo
dynamic functions. Finally, there is the problem of how 
the metastable state terminates 22 - 25 : Is there a well-de
fined spinodal line? Does the end of metastability cor
respond to a second order phase transition? In the para
graphs below we discuss these questions according to 
the point of view of this paper. 

The possibility that fO(h) exhibits an essential singu
larity as h - O· has been proposed by several authors l9

-
21 

based on various droplet or cluster models. They sug
gest that the singularity is associated with short range 
interaction models (such as the Ising model) and thus 
that the analytic continuation of mean field type models 
(such as those of Sec. 3) provides little evidence for the 
absence of a singularity in more realistic models. 

The existence of an essential singularity at h = 0 is 
not totally inconsistent with our picture of metastability 
in that Conjecture 1 (and some of Conjecture 2) could be 
valid with Conjecture 3 invalid. This might occur, for 
example, if the size of level crossing regions, Pn, and 
the characteristic spacing between them, ~n' were of 
the same order of magnitude as n - 00 with the result 
that a branch cut develops for f+(h) along the negative 
real axis. However, we believe that Conjecture 3 is 
valid for the Ising model, with the difference between 
short and long range interac tion models being manifest
ed in a more subtle manner: namely, that in long range 
models Pn=O(exp(-l/~n)P) for some p > 0 (as in the 
first two models of Sec. 3) while in short range models 
Pn - (~n)q for some q> 1 (as in the third model of Sec. 3). 

The question as to whether and how critical droplets 
make an appearance in our picture is an intriguing one. 
It is tempting to suppose that they somehow correspond 
to the eigenstate of Ln(h) lying at the common "peak" of 
the two groups of polarized states of our "stacks of 
chips" picture; in the Lipkin model, for example, this 
would be the state >¥(n, 83), where 83 is the location of 
the local maximum of the V h of (3.5). If this were so, 
then the value of the free energy along the connecting 
sheet(s) of Property 5 of Sec. 1 should be a parameter 
of the critical droplets. 

However, it is jus t on the subj ec t of critical droplets 
that mean field theories and local interaction theories 
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differ most crucially. In mean field theory the critical 
droplet is a global excitation-in the work of Penrose 
and Lebowitz26 it grows to infinity albeit more slowly 
then the volume-while for Ising and local theories it 
is expected to appear at a finite energy above the meta
stable ground state. It may be that critical droplets 
simply do not appear among the eigenvectors of the 
transfer matrix but only are manifested in the statistical 
mechanical states of the entire lattice, which are very 
different objects. Should our method prove successful, 
it may be precisely because we deal with the less phy
sical eigenstates rather than with states of the entire 
lattice. 

The end of metastability is a well-defined phenomenon 
according to Property 4 of Sec. 2. Thus, as the eigen
value gap between the metastable ground state and its 
first excited state tends to zero, a second order phase 
transition occurs. This suggests a new numerical 
method to search for the spinodal line which is concep
tually distinct from the Monte Carlo methods of Binder 
and Miiller- Krumbhaar. 24 

As a final subject for this section, we consider the 
fact that the ISing model has no dynamiCS and the idea 
that it is for this reason that r(h) has no singularity at 
h = 0 and remains real (with no branc h cut) along the 
negative real axis. Study of the Ising model without 
dynamics is analogous to finding the energy of say the 
2s level of hydrogen from the Coulomb force while 
neglecting the quantized elec tromagnetic field. Both 
systems are idealized since in the real world the same 
forces that provide binding (or ordering) also cause the 
decay. Nevertheless, solving for the 2s state is a good 
way to start work on hydrogen, and we expect that the 
idealized Ising metastable states have relevance to, 
say, metastable states for models with dynamics, 27 

where perhaps the free energy develops a cut along the 
negative axis with the imaginary part of the free energy 
along that cut related to the metastable lifetime. 21 

ACKNOWLEDGMENTS 

The authors are grateful for many useful conversa
tions with M. Cassandro, C. Kuper, M. Revzen, and 
R. Shtokhamer. One of the authors (C. N.) would like 
to thank the Physics Department of the Technion for its 
hospitality during his visit there. 

*Research supported in part by NSF Grant MPS 74-04870 A 01. 
tNATO postdoctoral fellow on leave (1975-76) from the De
partment of Mathematics, Indiana University, Bloomington, 
Indiana, U. S. A. 

IJ. Ashkin and W. E. Lamb, Jr., Phys. Rev. 64, 159 (1943). 
2M. Kac, "Mathematical Mechanisms of Phase Transitions," 
in Brandeis Summer Institute 1966: Statistical Physics, Phase 
Transitions and Superfluidity, edited by M. Chretien, E. P. 
Gross, and S. Deser (Gordon and Breach, New York, 1967). 

3C. J. Thompson, Mathematical Statistical Mechanics 
(Macmillan, New York, 1972). 

4T.D. Lee and C.N. Yang, Phys. Rev. 87, 410 (1952/. 
OM. Suzuki and M. Fisher, J. Math. Phys. 12, 235 (1971). 
6B. Simon and R. B. Giffiths, Commun. Math. Phys. 33, 145 

(1973), 

C.M. Newman and loS. Schulman 29 



                                                                                                                                    

7H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 
188 (1965). 

8N. Meshkov, A.J. Glick, and H.J. Lipkin, Nucl. Phys. 62, 
199 (1965). 

9A.J. Glick, H.J. Lipkin, and N. Meshkov, Nucl. Phys. 62, 
211 (1965). 

loD. Agassi, A.J. Lipkin, and N. Meshkov, Nucl. Phys. 86 
321 (1966). 

liE. H. Lieb, Commun. Math. Phys. 31, 327 (1973). 
12A.R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton U. P., Princeton, N. J., 1957), p. 59. 

13Colin J. Thompson and Mark Kac, Studies Appl. Math. 48, 
257 (1969). 

HC. Domb, Adv. Phys. 9, nos. 34 & 35 (1960). 
15M. Kac, in Fundamental Problems in Statistical Mechanics. 

II, edited by E. G.D. Cohen (North-Holland, Amsterdam, 
1968). 

lGE.N. Lassettre and J.P. Howe, J. Chem. Phys. 9, 747, 801 

30 J. Math. Phys., Vol. 18, No.1, January 1977 

(1941). 
17G.S. Rushbrooke, Proc. Roy. Soc. (London) A 166, 296 

(1938). 
18J.G. Kirkwood, J. Phys. Chem. 43, 97 (1939). 
19A.F. Andreev, Zh. Eksp. Teor. Fiz. 45, 2064 (1963) [SOY. 

Phys. JETP 18, 1415 (1964)]. 
20M. E. Fisher, Physics 3, 255 h967). 
21J. S. Langer, Ann. Phys. 41, 108 (1967). 
22B. Chu, F. J. Schoenes, and M. E. Fisher, Phys. Rev. 185, 

219 (1969). 
23D.S. Gaunt and G. A. Baker, Jr., Phys. Rev. B 1, 1184 

(1970). 
24K. Binder and H. Miiller-Krumbhaar, Phys. Rev. B 9, 2:398 

(1974) . 
25C. Domb, J. Phys. A 9, 283 (lS76). 
260. Penrose and J. L. Lebowitz, J. Stat. Phys. 3, 211 (1971). 
27D. Capocaccia, M. Cassandro, and E. Olivieri, Commun. 

Math. Phys. 39, 185 (1974). 

C.M. Newman and L.S. Schulman 30 



                                                                                                                                    

Factored irreducible symmetry operators 
N. O. Folland 

Physics Department. Kansas State University. Manhattan. Kansas 66502 
(Received 22 June 1976; revised manuscript received 19 August 1976) 

Irreducible symmetry operators (ISO's) are defined and their properties are displayed. A method for the 
systematic construction of ISO's in the form of products of interchangeable factors is described. The key to 
the method is a set of conditions for directly testing for the irreducibility of induced symmetry operators 
formulated in terms of the operators themselves. Detailed examples are presented for the tetrahedral group 
and double group. The tetrahedral double group provides an example in which the induction process in its 
simplest form fails, but which does yield to a modification of the induction techniques. 

I. INTRODUCTION 

There is an extensive and growing literature including 
many monographs1- 5 describing the application of group 
theoretical techniques to physical problems. Typically, 
a physical system is described by a HamiltOnian, H, 
and the collection of operators, G, which leave the 
Hamiltonian invariant form a group in the mathematical 
sense. The problem that group theory solves is that of 
finding a maximal set of mutually commuting operators. 
For finite groups the solution of the group theoretical 
problem may be formulated in terms of irreducible 
symmetry operators (ISO's) or equivalently, in terms 
of the irreducible unitary representations (IUR's) of the 
group. 

The term "irreducible symmetry operator" or "ISO" 
defined in Sec. II is not universally used in the litera
ture. Typically, assigning a specific name to these 
operators is avoided. Special cases of ISO's are projec
tion operators. The page references in the monographs 
listed here (Refs. 1-5) refer to discussions focusing 
on what are here called ISO's. To avoid possible con
fusion the set of objects which form a group shall be 
referred to individually as group elements or operators 
and the term "symmetry operator" in this context will 
be avoided. It is peculiar that the monograph discus
sions of ISO's are so brief and incomplete in view of the 
fact that these operators are the basic working tools 
used in applying group theoretical methods to phYSical 
problems. 

The present work was motivated by the empirical 
observation that for many finite groups of physical inter
est (including all nonrelativistic crystalline space group 
groups) the ISO's may be expressed as the product of 
interchangeable factors. The idea may best be conveyed 
to the uninitiated by a simple example. Consider a 
group G consisting of the identity element E and a two
fold operator C! (q=E). The ISO's for the group are 
P+= t(E + C i ) and P_ =t(E - C i ). It follows that E =P 
+P_, P;=P+, P~=P_, andP+P_=P_P+=O. Thus, an~ 
set of functions on which the operations of the group are 
defined can be decomposed as ¢ =¢. + (/1_, where C+ 
= p. ¢ and ¢ _ = P _¢. And the eigenfunctions of H can 
be chosen to be simultaneous eigenfunctions of H P 
and P _, The group theoretical problem is solved: F~~ 
groups of small order there is little need for more 
formal procedures than those just described. 

One purpose of the present work is to show that 
factored ISO's may be constructed systematically by 

induction techniques. The key to the induction-based 
construction procedure is a theorem given in Sec. III 
which gives necessary and sufficient conditions that 
induced operators are ISO's. In the sense that induction 
procedures are well known and tests for irreducibility 
of induced representations are treated at length in text
books, the present results are not new and in certain 
respects are less refined. For example, the highly
refined techniques involving the "little group" can often 
produce the same results as the present methods (e. g. , 
see Ref. 4, Sec. II. 6). The main advantages are prac
ticality and simplicity. This becomes particularly ap
parent when time-reversal symmetry is considered. 
The present approach allows a high level of flexibility in 
choosing the form of degenerate irreducible 
representations. 

A second purpose of the present work concerns situa
tions in which standard induction techniques fail. In 
general for finite groups there may not exist subgroups 
from whose irreducible representations, the irreduci
ble representations of the group may be induced. An 
example of such a group is considered, the tetrahedral 
double group. It is found in Sec. IV that a modified in
duction technique allows the construction of highly 
factored ISO's for the tetrahedral and cubic double 
groups. 

The only extensive study on the process of expressing 
ISO's in factored form is that of Melvin. 6 Melvin as
sumes that an irreducible representation of the group 
is given and gives recipes for expressing the operators 
as a product of a "kernel" operator and a "quotient set" 
operator. Melvin does not explore the possibility of 
choosing the irreducible representations to facilitate 
the factorization process. The emphasis in the present 
work is to develop techniques for directly constructing 
the ISO's in factored form without knowledge of the ir
reducible representation. 

II. SYMMETRY OPERATORS 

In this section certain definitions and results of finite 
group theory will be briefly reviewed. These provide the 
basis for the definition of symmetry operators and ir
reducible symmetry operators (ISO's) and an exposition 
of their properties. 

An element g of a group G is represented by a non
singular, square matrix DA(g) of dimension nA in that 
for every pair of group elements g, g' such that g' g' 
= g", then DA(g) DA(g') = DA(gH). The matrix elements 
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DA(g)li are complex numbers. The set of matrices 
A = {DA(g)} is called a representation of the group. The 
number of group elements (matrix representatives) in 
the group (representation) is symbolized Co. 

The "intertwining" of two representations A and B is 
characterized by the (nAxnB)-dimensional, square super 
matrix M(A, B) whose elements are defined 

M(A, B)(I,m)(n,J) = (nA/ CO) I; DA(g-1 )Ii DB (g)mn, (1) 
K 

where the sum ~ includes all elements of the group C. 
The rows (columns) of the super matrix are indicated 
by the double indices (i, m) and (n,j) with i,j = 1, ... ,nA 
and n, m = 1, ... ,nB' The symbol g-1 denotes the group 
element inverse to g, g' g -1 = g-1 . g = e, where e is the 
identity element. 

Representations A and B are said to be equivalent 
(A - B) if nA =nB and there exists a square matrix S such 
that DA(g) = SDB(g)S-1 for each element g of C. The 
symbol S-1 denotes the matrix inverse to S, SS-1 = S-IS 
= E, the identity matrix. Any representation A I of a 
finite group is equivalent to a representation A by uni
tary matrices. A matrix is unitary if DA(gtl =DA(g)t, 
where the symbol t denotes matrix transposition and 
complex conjugation. In element form, [D A (g)-I]li 
= [DA(g),,]*, where the symbol * denotes complex con
jugation. Representations are said to be identical 
(A"" B) if for each g included in group C, DA(g) =DB(g). 
A representation A is irreducible if M(A,A) is the unit 
supermatrix or 

(2) 

If A and B are irreducible unitary representations 
(IUR's) and if A - B, then A :; B, then the "intertwining" 
matrix is evaluated to be 

M(A,B)(j,m)(n,j)=OABO/noim' (3) 

In particular this means that if A and B have no IUR's 
in common, M(A, B) = O. Of course Eq. (3) is just a 
compact form of the orthogonality relations. 

Symmetry operators are defined with respect to a 
group C and unitary representation A, 

P(A)IJ = (nA/ CO)I; D A(g-l)iJ g. (4) 
K 

Symmetry operators have properties including: 

[P(A)nmp = P(A)mn, (5) 
"A 

gP(A)mn= I; P(A)mkDA(g)kn, (6) 
1<=1 

"A 
P(A)iJP(B)mn= E M(A,B)(/,k)(n,nP(B)mk' (7) 

The superscript dagger (t) in Eq. (5) indicates the ad
joint operator. If an inner product is denoted by (QI,Q2)' 
then the adjoint of a general operator H is defined by 
(Ql, H(/)2) = (Ht (/)1> (/>2)' 

If the symmetry operators are formed with respect to 
IUR's they are called irreducible symmetry operators 
(ISO's). For ISO's the properties above are altered only 
in the case of Eq. (7) which is simplified by Eq. (3) to 

P(A)" P(B)mn = ° ABo/n P(A)mj' (8) 
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The properties described by Eqs. (5)-(8) follow direct
ly from the definition Eq. (4) and Eqs. (1)-(3). The 
following property of ISO's, 

(9 ) 

is obtained most directly from consideration of the 
regular representation. 

The regular representation R may be obtained by 
considering the CO-dimensional carrier space (/>R 
= (gl,g2,"'), where each element of the group is a 
component of the carrier space. Then, gql = (/>RDR(g) 
defines the regular representation matrix DR(g). The 
complete reduction of R by a similarity transform S 
to R' = {S-IDR(g)S} transforms the space (/>R to (/>R' = ¢RS. 

One may choose (/>R' = (P(A)l1' P(A)12, ••• ,P(B)/i' •• • ) 
including n~ symmetry operators for each distinct ir
reducible representation A. In component form the 
relation ¢R' =::;¢RS is given by Eq. (4) and the inverse 
relation ¢R = ¢R' S-1 is given by Eq. (9). Thus, the rela
tion between the regular representation and the ISO's 
provides a broader understanding of the symmetry 
operators. The proof of Eq. (9) is left to the reader. 
For more discussion of the regular representation see 
any of the group theory monographs (Refs. 1-5). 

The "resolution of the identity" or "spectral theorem" 
is a special case of Eq. (9). 

"A 

e =6 I; P(A)mm (10) 
A m=1 

in which g = e, the identity operator of the group. The 
operators P(A)mm which occur in Eq. (10) are projection 
operators because [P(A)mm]t =::; P(A)mm and P(A)mm PCB)"" 
=oABom"P(A)mm' The projection operators in Eq. (10) 
constitute the maximal set of commuting operators that 
can be formed with respect to the group. In this sense 
they constitute a solution of the group theoretical prob
lem. Any set of basis functions on which the operations 
of the group are defined may be decomposed into irre
ducible subspaces according to Eq. (10). 

In applications it is advantageous to use one projec
tion operator for IUR A, say P(A)II, and to generate 
"partner functions" using the property P(A)IJ P(A)l1 
= P(A)li' Thus, if P(A)l1(/)r has nonzero projection, 
then so will the "partners" P(A)1i¢r. In general the 
relation 

(P(A)II(/>r, HP(B)lll)J) = ° AB 0/J «(/>r , HP(A)l1(/>J) (11) 

follows from Eqs. (5) and (8) and the assumption that 
H is invariant to group operations. Matrix elements be
tween different IUR's and between different partners of 
the same IUR are zero. Matrix elements for each 
"partner" set {P(A)li(/,>r} are identical to matrix elements 
for the prOjected set {P(A)l1C/>r}' 

One further remark concerning the definition and 
properties of symmetry operators is implicit in the 
proceeding paragraph. The "partner" operators P(A)1J 
with j= 1, ... , nA contain all possible information about 
IUR A. The representation may be found from Eq. (6). 
The remaining ISO's may be found from the IUR and the 
definition, Eq. (4), or from the operators themselves 
because 
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III. IRREDUCIBILITY AND INDUCED SYMMETRY 
OPERATORS 

(12) 

In this section the induction of symmetry operators 
for a group G is defined in terms of the ISO's of a 
proper subgroup H of G. The properties of the induced 
representations are described and a set of necessary 
and sufficient conditions for the irreducibility of the 
induced representations is formulated. These results 
provide the basis for the systematic construction of 
factored ISO's. 

Suppose H is a proper subgroup of G. The group G 
may be expanded in left cosets of H; 

G=SH, (13) 

where S={e, S2, ••• , sn} is a set of n=Go/Ho coset gen
erators and sl=e, the identity element. Let a = {D"(h)} 
be an IUR of H with ISO's defined by Eq. (4) to be 

(14) 

Induced symmetry operators for induced representation 
A are defined by the "partner" operators 

(15) 

where p = 1, ... , nand j = 1, ... , na. The induced rep
resentation A is of dimension nA =nxna• The remaining 
symmetry operators for the representation A are found 
with the aid of Eq. (12). The adjoints of the partner 
operators of Eq. (15) are 

P(A)(Pj)(l1) =P(a)jlS ;l. (16) 

A general induced symmetry operator is given by 

P(A)(qj )(PJ) = P(A)(11)(Pj) P(A)(qj)(l1) = sp P(a)jjs;1. (17) 

It is easy to show that the induced representation A is 
unitary. Consider an arbitrary element g of G. In the 
double index notation of the induced representation 
Eq. (6) is 

n n. 

gp(A)(ql)(PJ) = {j tf p(A)(qj)(rk) DA(g)(rk)(pj)' (18) 

It follows immediately that the induced matrix repre
sentative is 

(19) 

where the function tl.(g,g') has the value 1 if g=g' and 
is ° otherwise. Hence, 

D A(g-1)(pj)(rk) =.6 D'(h-1)jk tl.(g-1 ·sr, sp ·h-1) 
h 

(20) 

and the induced representation A is unitary. The right 
member of Eq. (20) follows from the unitarity assumed 
for IUR a and because tl.(g-1sr,sph-1) =tl.(gsp, srh). 

Thus, the induced symmetry operators defined by 
Eq. (15) or Eq. (17) carry a unitary representation A 
with matrix representatives given by Eq. (19). The 
induced unitary representation A need not be irreduci
ble. The conditions for irreducibility may be expressed 
in terms of the symmetry operators. The induced sym-

33 J. Math. Phys., Vol. 18, No.1, January 1977 

metry operators will be ISO's if Eq. (8) holds or in the 
double index notation of the induced representation 

P(A)(P'}') (Pi) P(A)(Q'I')( qj) = I>w},)(ql) P(A)(q'j')(PJl • 

(21) 

The irreducibility conditions, Eq. (21), may be ex
pressed in terms of the induced symmetry operators, 
Eq. (17), as 

sp pea) j'j s;' Sq P(a)j'js;: = I>(p'j') (qj) sp P(a)j'j s;!. (22) 

Equation (22) is automatically satisfied for the case 
p' = q because a is an IUR. The general irreducibility 
conditions may be simplified further. When p' *q, the 
right member of Eq. (22) is zero. The left member of 
Eq. (22) is a linear combination of group elements with 
coefficients which are complex numbers. Such an object 
will be zero only if each of the complex coefficients of 
group elements is zero and it cannot be made zero by 
multiplication from the left or right by group elements. 
Hence, the irreducibility conditions can be rewritten 
as 

P(a)J'jsrhP(a)j'j s;1 = 0, r= 2, ... , n, (23) 

where Eq. (22) with p' *q has been multiplied from the 
left by s;1 and from the right by Sq,S;1 with S;'Sq=srh. 
Using Eq. (6), Eq. (23) becomes 

n • 

.6 [P(a)J'jsr P(a)j'ms;1] D"(h)mj = 0, r = 2, ... ,n. (24) 
m=1 

The irreducibility conditions may be stated in the follow
ing theorem. 

Irreducibility Theorem: Necessary and sufficient con
ditions that representation A of group G induced from 
IUR a of subgroup H be irreducible are that 

P(a)jj sp pea) jjS;1 = 0, (25) 

where i,j= 1,0.', n. and p = 2, ... , n = GOIHo. 

The proof is nearly complete with Eq. (24). Equation 
(25) are necessary conditions because they are special 
cases of Eq. (22), the general irreducibility conditions. 
Multiply Eq. (25) from the left by P(a)jj' and from the 
right by sp pea) J'js;1 and use Eq. (8) to obtain 

P(a)j i' sp pea) J'js;1 = 0. (26) 

Now Eq. (26) is identical to the coefficients of D'(h)mj 
(in square brackets) in Eq. (24) which is an alternative 
form of the general irreducibility conditions. There
fore, the conditions of Eq. (25) are sufficient and the 
proof is complete. 

The conditions for irreducibility require that the 
projection operators for IUR a, P(a)jj, annihilate with 
all conjugate projection operators sp P(a)jjs;1. It might 
well appear that these conditions offer little improve
ment over the conventional character tests for irreduci
bility (see, e. g., Ref. 4, pp. 140-162). Certainly, it 
would be awkward and tedious to apply the conditions of 
Eq. (26) to a sizeable group when the projection opera
tors are represented as in the definition, Eq. (4). The 
utility of the irreducibility theorem resides in that it 
provides the basis for the systematic construction of 
ISO's in the form of products of interchangeable factors. 
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TABLE 1. Operations of the tetrahedral group and double 
group. The first column gives the symbol for the group opera
tor. The effect of the group operator on a 3-space vector 
denoted by the three-tuple (x, y, z) is listed in the second 
column under the heading sR""m' Spin-space transformations 
are listed in the third column (labeled aRnam) in the form aRnam 
=aEcos(mr/m)+aRa2 sin(mr/m) as discussed in the text. The 
last column lists the unit vector appropriate to the transforma
tion (if any). °E is the identity spin transformation and aE2 a 
rotation in spin space by 3600 about an arbitrary axis. 

Symbol sR""m aRnam 

Ex2 (x,y, z) (IE 

E2 (x,y, z) aE2=_aE 

Cx2 (x,-y,-z) aCx2 

Cy2 (-x,y,-Z) aCy2 

Cx2 (-x,-y,Z) act!/. 

T 2w3 (y,z,X) (-"E +..[3"T w2)/2 

T4w3 (Z,x,y) (_aE-..[3Tw2 )/2 

T2x3 (-y,z,-X) (-"E+,(3°Tx2 )/2 

T 4x3 (-Z,-x,y) (- °E - ,(3°Tx2 )/2 

T 2y3 (-y,-Z,X) (- °E + ,(3°T,2)/2 

T 4•3 (Z,-x,-y) (-OE-!3°Ty2 )/2 

T 223 (y,-z,-X) (_oE+..[3°T.2)/2 

T4z3 (- Z,X, -y) (- °E _..[30 T.2)/2 

Often each factor itself is a projection operator and 
the application of the irreducibility theorem can be done 
by inspection. Trivial examples of factored symmetry 
operators are well known. For example, in the case 
where the structure of a group allows it to be expressed 
as a direct product G = H x K of two normal subgroups 
Hand K, the ISO's for G are simply products of the 
ISO's for Hand K separately. The factorization of an 
ISO must always be associated with structure inherent 
in the group. Conversely, the presentation of ISO's in 
factored form reveals structure inherent to the group. 

In the next section the process of constructing ISO's 
as products of interchangeable factors will be discussed 
more generally and in the form of explicit applications 
to the tetrahedral group. The case of the tetrahedral 
double group is of interest in that it provides an exam
ple of the smallest subgroup of the cubic double groups 
for which the systematic construction process fails in 
principle. An alternative procedure is devised to treat 
this case. 

IV. THE CONSTRUCTION OF FACTORED 
IRREDUCIBLE SYMMETRY OPERATORS 

Suppose that a group G has a normal subgroup H with 
coset expansion G=SH. The ISO for the identity repre
sentation of H is P(H1) = (l/HO) L hh. It is convenient to 
suppress the indices (11) on ISO's corresponding to one
dimensional IUR's. Since H is a normal subgroup of 
G, the conjugate operators sp P(H1) s;1 = P(H1) and an 
induced representation with respect to IUR H1 of H must 
be reducible by the irreducibility theorem. However, 
even if the coset generators sp cannot be chosen to form 
a group the set of operators G1 = {sp P(H1)} form a group 
isomorphic to the factor group G/H. Clearly, the ISO's 
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for the group G1 are expressible as a linear combination 
of coset generators with complex coefficients multiplied 
by P(H1). The connection with Melvin's workS is evident. 
P(H1) is Melvin's "kernel" operator and the linear com
bination of coset generators is Melvin's "quotient set." 
It may be possible that G1 and H can be decomposed into 
subgroups thereby allowing further factorization. The 
failure of a given IUR of the subgroup to allow induced 
IUR's can often be a useful inSight into the basic struc
ture of the group. 

More general construction procedures for factored 
ISO's using subgroup techniques can be formulated in 
the operator language. Suppose that a proper subgroup 
H of G=SH has a one-dimensional IUR with ISO P(H2). 
The conjugate operators spP(H2) s;l formed with respect 
to the coset generators 5 can be classified according 
to whether the quantity Q(H2)p = P(H2) sp P(H2) s;l is zero 
or not. If Q(H2)p = 0 for all p except sl = e, then by the 
irreducibility theorem the induced representation is an 
IUR. When Q(H2)p is nonzero for one or more sp * e, 
several possibilities arise. First, if sp P(H2) s;l = P(H2) 
for one or more sp * e, then the set {sp P(H2) : sp P(H2) s;l 
= P(H2)} which includes P(H2) is in general a multiplier 
group (see Ref. 5 for a discussion of multiplier groups). 
If sp and So are included in the set and sps. = sr h, then 
sr must also be in the set of coset generators which 
commute with ISO P(H2). It follows that (spP(H2)(s.P(H2» 
=srhP(H2) = (sr P (H2))D

H2(h), where the factor D H2(h) is 
the one-dimensional matrix representative for element 
h in IUR H2 of H. The previous statement confirms that 
the set of operators is a multiplier group. In this case 
the test for irreducibility of the induced representation 
indicated a larger subgroup to be considered for induc
tion and provided information about the structure of this 
larger subgroup which may be used in finding its ISO's. 
The second possibility is not favorable. In the case 
Q(H2 )p is nonzero for one or more sp =e and no simple 
relation can be found between operator P(H2) and the 
conjugate operators sp P(H2) s;l, the method fails. Al
though there are many groups of physical interest for 
which induction techniques can be used successfully, 
there are also groups for which the method fails. 

The tetrahedral group and double group are now con
sidered as illustrations of the induction methods. The 
groups operations are expressed in terms of symmetry 
axis unit vectors, There are three twofold axes: 
{; = (k 0 0) {; = (0 1,0), {;. = (0, 0, 1), and four three
f;ld ~e;: (='(1,1,' 1)/,13, Tx = (1, - 1, - 1)/,13, 
T - (- 1 1 - l)/if T = (- 1 - 1, 1)/v'3. Active rotations 

y- " 'I! , 
in the right-hand sense about an axis defined by a unit 
vector Ra by an angle e =n2rr/m are denoted by the 
symbol Rnam. Indices n, in = 1 are suppressed. A pre
superscript sea) distinguishes between operators on 
space (spin) coordinates in situations where an ambiguity 
might arise; otherwise the presuperscript is suppressed. 

The operations of the tetrahedral group T are listed 
in Table 1. Spin-space transformations are expressed 
in the form 

°Rnam =oE cos (nrr/m) +oRa2 sin(nrr/m), 

where 

(27) 

° Ra2 = - iRa'" (28) 
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T ABLE II. Multiplication and commutation relations between 
selected operators of the group DT. the tetrahedral double 
group. The double group relations of part A may be specialized 
to tetrahedral group relations by setting E2 = 1. Hybrid opera
tors are defined in the text. Eqs. (48)-(50). 

A. Relations between selected tetrahedral double group 
operators: 

Cy2 C.-z = E2C.2Cy2 = C,a. C.-zC x2 = E2Cx2C.-z = Cy2 • 

C,aCy2 = E2Cy2Cx2 = C.-z. Cx2Cx2 = Cy2 Cy2 = C.-zC.-z =E2• 

C,aT2Wl = T2Wl Cy2' CyZT2Wl = T2Wl C.2• C.-zT2Wl = T2WlCx2' 

C,aT4Wl = T4Wl C.2• Cy2T4W3 = T 4w3C,a, C.-zT4Wl = T4WlCy2' 

B. Relations between hybrid operators and selected double 
space group operators: 

CwCw= CdCd= CwdCWd = E2• CwdCd= E2CdCwd = Cw' 

CdCw= E2CwCd= Cwd• CwCwd=E2CwdCw= Cd' 

CwT2Wl = T 2WlCw' Cw T4w3 = T4WlCw' 

Cd T2Wl = T 2Wl Cd(-E -f3Cw)/2. T 2w3 Cd= Cd(-E +f3cw)T2Wl/2. 

CdT4Wl = T 4w3Cd(- E +f3 Cw)/2. T 4w3 Cd= Cd(- E - f3 Cw)T4w3/2. 

is given in terms of the matrices O'IJ==O'J, j==1,2,3. 
The matrices O'J are homomorphic to the Pauli spin 
matrices and have multiplication properties, 

O'IO'J =="EOIJ +iO'IJ~O'~' (29) 

In listing the spin-space transformations an explicit 
choice of spin representation is not made. The multi
plication properties of spin-space operators do not de
pend on the representation. The spin-space transforma
tions are expressed in terms of rotations by 1800 about 
the symmetry axes Ra because their multiplication prop
erties are simple, 

(30) 

where Ra x Rb is the vector cross product and Ra . Rb is 
the vector dot product. Also, spin representations may 
be chosen to be compatible with the double group ISO's 
and simplify their application. 

The choice of spin representation may be made on 
the basis of geometrical considerations. For the present 
purpose it is convenient to consider spin space to be 
two-dimensional. It is trivial to extend the method to 
deal with four-dimensional Dirac spinors. The usual 
representation for the Pauli spin matrices is 

Wt==(~ ~), W2==U ~i), W3==(~ _01), (31) 

where indices 1,2,3 correspond to the coordinate axes 
x, y, z. The Pauli spin matrices WI satisfy Eq. (29). 
Alternatives to the conventional Pauli representation 
may be constructed with respect to any orthogonal set 
of real unit vectors a,b,c==QXb. Let 

(32) 

where n is ri, b, or c. The multiplication properties 
of the operators O'a' ab , ac are isomorphic to the opera
tors ax, a y , a. which are also defined by Eq. (32) with 
n =x, y, or Z, the coordinate axes unit vectors. Conse
quently, the matrices aa' ab , ac may be represented by 
the Pauli spin matrices 
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(33) 

Then, Eq. (32) may be inverted to obtain the represen
tation associated with the coordinate axes, 

(34) 

where n==x,Y,z and n==x, y, Z. The effect has been to 
choose the Pauli spin matrices to correspond to particu
lar directions in space other than the coordinate axes. 

Double group operators simultaneously transform co
ordinate space and spin space. They may be represented 
as Rnam == sR "am sR nam' The tetrahedral group T has one 
normal subgroup V = (E, C,,2, Cy2 , C .-z). The coset expan
sion of T with respect to V is T = C 3 V where the coset 
generators may be chosen to be the group C 3 

== (E, T 2w3 , T 4w3 )' In the case of T, the operator T 4w3 
== (T ZW3)Z = T w3' The tetrahedral double group DT has 
two normal subgroups, the trivial subgroup consisting 
of the identity and rotations by 360 0 (E, Ez) and the 
double subroup DV == (E, Cxz, Cya, C.z) (E, E z). The coset 
expansion of DT with respect to DV is DT == C3DV. In 
the case of DT the operator T4w3=(Tzw3)z=EzTw3' Again 
C3 is a group. Note that in Table I are listed aU the 
operators for T plus Ez• The remaining operators for 
DT are obtained from the tabulated operators by multi
plication by Ez• 

Having defined the groups and characterized some 
aspects of their structure it remains to exhibit the com
mutation properties of selected operators before the in
duction-factorization methods may be used to obtain 
ISO's. Only those operators exhibited in the coset de
composition are needed. These are listed in Table II, 
Part A. The properties listed apply to the group T if 
E2 is set to unity. 

In seeking the ISO's for the group T the subgroups V 
and C 3 will be considered first. Group V is the direct 
product of normal subgroups of V, (E, Cx2 ), and (E, Cy2 )' 

Hence, the ISO's are immediately found to be 

P(Vo) == HE + C x2)(E + C y2), 

P(Vt) = HE + C,,2)(E - Cy2 ), 

P(V2) == HE - C x2 )(E + Cy2 ), 

P(V3) == HE - Cx2 )(E - Cy2 ). 

(35) 

(36) 

(37) 

(38) 

The group C3 is a cyclic group of order three. The ISO's 
are 

P(Wo) = (E + T 2w3 + T 4w3 )/3, 

P(Wt ) == (E + wT2w3 + w2T 4w3 )/3 = P(W2)*, 

P(W2) = (E + w2T 2w3 + wT4w3 )/3 == P(Wt )*, 

(39) 

(40) 

(41) 

where w == exp(i2w/3) is a cube root of unity. Next the 
conjugates ISO's for V are checked for possible induc
tion. It is found using Table II, Part A that T 2w3P(VO) 

== P(Vo) Tzw3 , but T 4w3 P( Vt) T 2w3 == P(V2) and 
T zw3 P(Vt ) T 4w3 =P(V3). Inducing with respect to P(Vo) 
produces reducible symmetry operators while inducing 
with respect to P(Vt ) gives an IUR by the irreducibility 
theorem. Now the operator set C3 P(Vo) is isomorphiC 
to C 3• Hence, the ISO's for T include three one-dimen
sional ISO's, 
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P(To) = P(Wo) P(Vo), 

P(T1) = P(W1) P(VO), 

P(T2) = P(W2) P(VO), 

and one three-dimensional IUR with ISO's, 

P(T3)11 == P(Vt ), P(T3)12 = l.Iw3P (T3)11, 

P(T3)t3 = T 2w3P(T3)tt, P(T3ht = T 2w3P(T3)22 , 

P(T3b == P(V2), P(T3)23 == T 4w3P(T3b. 

P(T3)3t = T 4w3P(T3)33, P(T3h2 = T 2w3P(T3h3, 

P(T3)33 =P(V3)· 

(42) 

(43) 

(44) 

(45) 

In treating the double group DT, the normal subgroups 
(E, E2) and DV will be considered first. The ISO's for 
(E, E 2) are 

Qo=i(E+E2), Ql=i(E-E 2). (46) 

Both Qo and Q1 commute with all operators of DT, and 
neither operator can be considered for induction. The 
coset expansion of DT with respect to (E, E2) is DT 
= C T(E, E 2) where the set of coset generators is conven
iently chosen to be the double group operators of T as 
listed in Table 1. The operator sets DT1=CTQo and DTl 
= C TQl are orthogonal in the sense that any operator of 
DTo multiplied by an operator of DT1 is zero because 
QoQ1 == O. Since Qo is even with respect to E2 the ele
ments of DTo are isomorphic to T and the ISO's for 
DTo have the same form as the ISO's for T. In physical 
applications E2 == - E and Qo == 0, so these ISO's for DT 
are physically trivial. Of course, this situation is well 
known and always occurs with double groups. The oper
ator set DT1 is a multiplier group which submits to the 
coset decomposition DT1 =C 3DV1, where DVt 
= (E, Cxz , C~2' C .eIl)Qt. The analogy to the treatment of 
T stops upon observing that although D VI 
= {(E, C x2 )Qt)«E, C~2)Q1) is the product of two multiplier 
groups, the ISO's cannot be expressed as the product 
of the ISO's for the multiplier groups, In fact the induc
tion-based construction breaks down for this case. It is 
easy to find ISO's for DV1, 

P(V4 )11 == teE + iC .eIl)Ql, P(V4 )12 = C~2P(V4)11' 

P(V4)21 = - C~ZP(V4)22' P(V4)Z2 = HE - iC .eIl)Ql' 

47) 

The IUR of DV obtained from Eq. (47) is identical to that 
obtained from the Pauli spin matrices, Eqs. (28) and 
(31). The conjugate projection operators formed with 
respect to C 3 are not simple and induction fails. 

However, it is possible to choose an IUR of DV1 
equivalent to that obtained from Eq. (47) which allows 
factored ISO's for DT. What is needed is an IUR with 
projection operators which commute with the operators 
of C 3• From the commutation properties in Table II, 
Part A it is seen that an operator proportional to (C x2 
+ C~2 + C.eIl) will commute with C 3' Since double group 
operators are isomorphic to the corresponding spin
space operators, the construction of alternative spin 
representations described in connection with Eqs. (32)
(34) suggests the definition of the following "hybrid" 
double group operators: 

C wd = (- 2C x2 + C~2 +C .eIl)/f6, (48) 

(49) 
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Cw=(Cx2+C~Z+C~Z)/Y3. (50) 

The multiplication properties of the "hybrid" operators 
are isomorphic to the operators, Csz , C~z, C.e\!, as is 
shown in Table II, Part B. Of course, the above choice 
of "hybrid" operators is not unique. In general the 
coefficients of operators Cxz , C~2' C ~2' must be ortho
gonal, real unit vectors in 3- space. The alternative 
ISO's for D V may be obtained by replacing C.eIl with C w 

and C y2 with Cd in Eqs. (47). In this IUR the hybrid 
operator matrix representatives are identical to those 
obtained from the Pauli spin matrices. The matrix 
representatives for C xz , CyZ , and C~2 are most easily 
obtained by inverting Eqs. (48)-(50). 

The form chosen for the hybrid operators allows the 
operator set DTI to be rearranged into a subset of com
muting operators, DW= (E, Cw)Q1C3, which is a multi
plier group. 

The ISO's for DW are 

Pen, m) = teE + imCw)Q1P(Wn), (51) 

where n = 0, 1, 2 and m = + 1 or - 1, The ISO's have the 
property 

Pen, m)P(n' , m'l =P(n, m)6nn.6mm•• (52) 

The operators of the rearranged set DT1 = (E, Cd)DW 
form a group algebra, but do not form a group or 
multiplier group. Nevertheless, the ISO's may be con
structed as in the case of induction with respect to a 
subgroup, 

P(T4)11 =P(O, + 1), P(T4)lZ =CdP(T4)11, 

P(T4)21 = - CdP(T4)2Z, P(T4lz2 =P(l, -1). 

peT 5)11 = P(l, + 1), P(T5)12 = CdP(T5)11 , 

P(T5)21 =- CaP(T5)zz, P(T5)22 =P(2, -1), 

P(TS)l1 =P(2, + 1), P(TS)12 = CaP(Ts)l1. 

P(TG)21 = - CdP(TG)22, P(T6hz =p(O, -1). 

(53) 

(54) 

(55) 

In performing the inductionlike process, conjugate oper
ators were calculated using the relations in Table II, 
Part B. The process may be extended easily to obtain 
ISO's for the double cubic group, DO, and the double 
full tetrahedral group including reflection planes, DTa. 
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The Wegner approximation of the plane rotator model as 
a massless, free, lattice, Euclidean field 
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The approximate plane rotator model proposed by Wegner can be reinterpreted as a massless, free, lattice, 
Euclidean field model. Using this approach, we compute the two-point correlation function and the 
magnetization for the spin model as functions of the covariance of the fields. 

INTRODUCTION 

Stanley, Kaplan, and others l have shown on the basis 
of high-temperature expansion that the susceptibility of 
the two-dimensional plane rotator model is infinite be
low some critical temperature. As shown by Mermin, 2 

this phenomenon cannot be due to spontaneous magneti
zation. As an explanation, Wegner3 (see also Ref. 4) 
suggested an approximation of the plane rotator model in 
which he can compute explicitly the two-point function. 
His result agrees with what is known in one and three 
dimensions 7 and with infinite susceptibility at low tem
peratures in two dimensions. 

Here we simply reinterpret this approximation: It is 
equivalent to a critical Gaussian spin model or to a 
massless free Euclidean (Bose) field on a lattice. 
Although the latter is not well defined, some quantities 
as differences of covariances remain well-defined when 
one passes from a massive field to a massless field 
(Sec. 2). We compute then the two-point function for the 
rotator model in the Wegner approximation in terms of 
differences of covariances of Euclidean fields. That 
allows us to easily recover Wegner's results (Sec. 3). 
When an external field is added, the model corresponds 
to a massil'c lattice field; in this case we compute the 
magnetization in terms of the covariance of the 
Euclidean field (Sec. 4). 

I. THE PLANE ROTATOR MODEL AND THE 
WEGNER APPROXIMATION 

To each point i of a d-dimensional lattice Zd, we 
attach a classical two-component spin of unit length, 
i. e., a vector: S i = (cosrp i' sin¢>;l (i E Z1). We consider a 
system of IV such spins interacting with ferromagnetic, 
nearest neighbor interactions, 

(1) 

where J > 0 and the sum is extended to all nearest neigh
bor lattice sites. (We use periodic boundary 
conditions. ) 

For any continuous function!(¢>I'" rfJ N), the average 
given by this model is 

(2) 

with 

f3 = ekB T)-l, I? B = Boltzmann constant, T = temperature. 

Since the measure in (2) is periodic, one may let 
CPl' •. CPN run from - 00 to + 00 and consider! as a period
ic function in each variable separately. So in (2) we may 
change the integration limits to - 00 and + 00 both in the 
numerator and in the denominator simultaneously. 

The approximation proposed by Wegner consists in 
assuming that for very low temperature, the difference 
IP; - 1> j between neighboring spins is very small. So in 
(1) we can expand the cosine up to second order: 
COS(1)i - rfJ) -1 - ~(1)i - rfJY. 

In that apprOXimation, the average (2) becomes 

U> = L:!( CPl' •• ¢N) exp( - f3J/2)7, <1,j)(¢1 - IPj)2)nN d<1>i 
J.: exp( - f3J /2)7, < i,j)(1J i - 1J)2)nN d¢ i 

(3) 

The denominator of (3) is the "partition function" Z;; of 
the Wegner model. It can also be written as 

Z~(f3) = r: exp~ - 2d f3J)~ rfJ~ + f3Jlj) rfJ i ¢ ';fr drfJ i (4) 

which shows that the 1> i 's are now Gaussian variables. 

So the classical plane rotator model is apprOXimated 
by a lattice Gaussian spin model. In fact, this Gaussian 
model is Singular as we shall see in the follOwing 
section. 

II. MASSLESS EUCLIDEAN FIELDS 

Let us begin with a massive free Euclidean field <P of 
mass m and conSider its lattice approximation <I> i (the 
field <P at the lattice point i 5

). (We take a unit lattice 
spaCing, so the lattice is J2,d). The measure associated 
to this lattice field is 

If we express this in usual notation for Gaussian spin 
models 6 by letting <P i =q/(4d +2m2)-1/2 we get 

( 142" )N exp -2 ?Jq; +K 4---. qlqj ndqi 
t=1 <t, J) 

with K = (4d +2m2)-I. 

(5 ) 

(6) 

For the particular value K = (4d)'1 which corresponds 
to a massless Euclidean field, the respective measures 
can be rewritten as 
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for the spins and 

exp C~ ?:: (cf>; -cf>j)2)ndcf>; 
\ <E.» 

(7) 

for the massless Euclidean fields. 

Comparing (7) and the denominator of (3) and putting 
cP; = cf> M~J)-I / 2 we see that the Wegner approximation of 
the plane rotator model at any temperature f3 is equiva
lent to a model of free massless lattice Euclidean field 
[or to a Gaussian spin model at K = (4d)-I). 

Now, Berlin and Kac6 have shown that Gaussian spin 
models cannot be defined for all values of K. Indeed the 
quadratic form appearing in (6) must be negative definite 
for the finite volume partition function to exist; this is 
the case for K < (4d)-I. For such values of K, these 
authors compute the free energy in the infinite volume 
limit. 6 Moreover, the resulting expression (given by an 
integral) has only integrable singularities at K = (4d)-I, 
thus the free energy still exists for K = (4d)-I. However, 
for K > (4d)"1 it becomes complex so that the model is 
no longer defined. 

Thus K = (4d)"1 is a critical value in the sense that the 
infinite volume limit free energy exists but the partition 
function (in a finite volume) does not. This is manifested 
in the expression (7): The quadratic form in the expo
nent of the measure is still negative but no longer nega
tive definite: It vanishes when all the cf>;'s are equaL 

However, from this N-spin Singular model, we shall 
construct an (N -1)-spin nonsingular model: Consider 
the noncritical Gaussian model. The quadratic form 
appearing in (6) can be diagonalized by an orthogonal 
transformation6 

/ ; = ~ ~=l Vi) q j where 

1 ( 21T. ( . . 21T. . \ Vii = fN cOS N (1-1) 1 -1) +smN (I -1)(} -1)j 

and we obtain as a new measure 

( 

N ) .'I 
exp -~(t-KA)t~ Dld/;. (8) 

The A;'s depend on the dimension. They are computed 
explicitly in Ref. 6 but the only thing we need here is 
that for all dimensions, Al = 2d and Ai < 2d for i = 2, ... , 
N. Then when K tends to the critical value (4d)"l, KAI 
tends to ~ and the coefficient of the variable tl in (8) 
vanishes. So the diagonalized form of the critical 
Gaussian measure is 

[ ~(1 Ai) 2J dfl·exp -1S2 2-4"d II dt2 ···dIN· (9) 

This explains in what sense the model is singular. The 
partition function is infinite because of the tl integral 
but the behavior in the N -1 other variables is a usual 
noncritical Gaussian model. When we compute average 
values of functions depending on 12 , ••• , t N only, the /1 
integrals cancel in the numerator and the denominator. 
In particular, the differences qj -qj do not depend of II 
(because of the explicit form of the VI/s). Thus q j - q j 
(resp. cf> i - cf> j) is a well-defined Gaussian random vari
able in the critical Gaussian model (resp. in the mass-
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less field model). That is not true for q I or cf> I 

themselves. 

III. THE SPIN CORRELATION FUNCTION 

The two-point function of the rotator model depends 
on differences CPj - CPj; therefore, it can be computed in 
a very simple way, using the equivalence between the 
Wegner approximation and the massless Euclidean free 
field model derived in Sec. 2. 

(Si' S) 

= lim( cos (cp; - cP ) N = lim / cos(cf> ;.;: i)) 
N-~ N-~\ y pJ 

N ,m=O 

= exp (- 2~J P_~«4>; - cf> /).'1,0) 

=exp (- }J lim lim«cJ>DN m-(cJ>;cf>j)N) 
#-.J N~ QO m"o' . ~ 

=exp (- }J limlim(Ci/-Cjj)N m)' (10) 
jJ N"'*oo m"O ' 

where Clj=(cJ>icJ>j)N,m is the covariance of the massive 
free Euclidean field on a lattice, with periodic boundary 
conditions. An explicit computation (see the Appendix) 
gives the follOwing result: 

1 k(Nl 1 -exp[ik(l-j)] 
(Ci/-Cij)N,m=}jL( 2d+m2-2~~ cosk 

'<!=Il 1) ad· a 

Taking now the limit m - ° and then the infinite volume 
limit (N- 00) we get 

(r = 1 - n. 
This COincides with the result of Wegner. The integral 
(11) may be evaluated for d = 1, 2,3. 3 

For d= 1, (Si' Sj) -exp(- i rl /2f3J)1 
for large i r I • 

ford=2, (Si,sj)-lrl-J/uaJ 

This quantity tends to zero very slowly as 1 ri - 00 and 
therefore the susceptibility X - (1/2 T)~.I r l-kB / UJ 

diverges for T suffiCiently small. 

Ford=3, lim (S;·Sj)=exp(-Cst/f3 J )*O. 
II-j I- ~ 

Thus we have long range order in three dimensions (it 
is also true for higher dimensions). 

IV. THE MODEL WITH AN EXTERNAL MAGNETIC 
FIELD 

ConSider now the plane rotator model with an external 
magnetic field. The measure is given by 

exp(f3J E cos(cpj - CPj) + f3h£ coscp;)nd1>;. (12) 
( Ij) i=1 

Let us see what happens if we expand not only COS(CPi 
- 1> j) but also cos 1> I in series up to second order, as
suming that in an external field, the spins tend to take 
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the direction of the field ( cP i «1). This assumption is 
questionable in the limit h - 0 but it allows uS to find 
results coherent with those of Sec. 3 in particular for 
the value of the spontaneous magnetization in three 
dimensions. 

With this approximation we have as a new measure 

or in terms of Euclidean fields 

(13) 

This measure describes a free lattice Euclidean field 
with mass m = -Ih/J > 0; the addition of a magnetic field 
in the spin model corresponds to the addition of a mass 
in the Euclidean field model, We can now compute 
quantities depending on the <I> I' s themselves and not only 
on differences of <I> i'S as before, for instance, the 
magnetiza ti on 

=v~exp(- 2~J (<I>~)N.m)=exp(-2~J C U)' 
(14) 

where C Ii> the covariance of the free lattice Euclidean 
field with mass m, is given by 

1 f' 1 C il = tfd rn 2 +4'" sin2(k /2) dk1 •• • dkd o 6 a=l a 

(see Appendix). 

Now let the magnetic field go to zero. This corre
sponds to rn - 0 in the field model; in that limit C ii 
diverges in one and two dimensions and converges for 
d?- 3. (This is only true if we take the limit m - 0 after 
the infinite volume limit. As can be seen in the Appendix 
the finite volume m = 0 covariance is infinite in any 
dimension because of the k = 0 term in the sum.) 

Thus 

lim(cosCPt)h=O for d=1,2, 
h-O 

'" 0 for d = 3, 4, 

So in three and more dimensions, there is a discontinu
ity in the magnetization at h = 0, since by symmetry 
(cos 1> I) h=O = 0 in all dimensions. 

The value of the spontaneous magnetization in three 
dimensions equals the square root of the limit of 
<cos( cP I - cP j» when 11 - j! - 00. This follows from Eqs. 
(10) and (14) and limll_JI_~Cii=O by the Riemann
Lebesgue lemma. (See in the Appendix, C Ij with m = 0 
and d = 3, 1/(6 - 2 L: !=I coska) is integrable for k. 
E(-7f,7fj.) 

39 J. Math. Phys., Vol. 18, No.1, January 1977 

APPENDIX: COVARIANCE OF THE FREE LATTICE 
EUCLIDEAN FIELD WITH PERIODIC BOUNDARY 
CONDITIONS 

ConSider the massive free Euclidean field on the 
lattice Zd, i. e, ,5 the Gaussian random process <I> i in
dexed byZ1 with covariance <<l>i<l»=(-~I +m2tl, where 
Al is the finite difference operator which approximates 
the Laplace operator ~ in d dimensions. 

~I is defined on the space 12(Zd) of square-summable 
sequences on Z' by 

(~J)i= -2dfi + ~ fj' 
I i-j ! =1 

The operator A = - ~I + m 2 is a convolution operator with 
kernel 

2d + 1112 if i = j, 

a(i -)b if :i-):=1, 

o otherwise. 

In order to describe the field with periodic boundary 
conditions we consider the subspace I~N(Z') of 12(Zd) 
conSisting in sequences periodic in each direction, the 
period being a cube of volume N. The periodic field is 
defined as before but we replace Al by Ai, the restric
tion of Al to l~N(Zd). 

The Fourier transformation: h "L: 7'=1 f j e~ - ik . j) is 
a unitary map from l~N(Z d) onto the space l~N of periodic 
square-summable sequences on the reciprocal lattice. 
In the first Brillouin zone, i. e., (- 7f, 7fJd, there are 
exactly N allowed values of k denoted by k(l) . .• k(N) 
which are symmetrical around O. 

In ~ the Fourier transform of A is defined by 

A is the operator of multiplication by 

N 

ak=L. a(j)exp(-ik.j)=2d +m2-2coski 
j 

- 2 coskz ••• - 2 cosk •. 

Now the covariance C =A -1 of the field is a convolution 
operator in l~N(Zd) so that (3 =A-I is the operator of 
multiplication by (dkt i

• Then by the inverse Fourier 
transform, 

When N- "", the number of allowed values of k in
creases, so that in the limit k covers [- 7f, 7fJd. Thus in 
the thermodynamical limit, 
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1 f' exp[ik' (i - j) 1 ddk 
CiJ= (21T)d 2d+m2 -2L:!=lCOsk. 

-r 

1 f' cos(k· (i - j») d~k. 
=;a o2d+m2-2L:~=lCOsk. 
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We show that a positive energy argument of Geroch can be modified to rule out a possible class of 
counterexamples to the cosmic censor hypothesis proposed by Penrose. 

1. INTRODUCTION 

In general relativity, global quantities such as total 
energy or total angular momentum of an isolated sys
tem do not arise as naturally as in special relativity. 
The essential reason why this is so is that in curved 
spacetime one does not have the action of the Poincare 
group as a group of isometries. Nonetheless, if the 
spacetime is asymptotically flat, such quantities can be 
defined in general relativity as surface integrals in 
the asymptotic region. However, these global quantities 
cannot, in general, be converted into volume integrals 
over the interior region. Without such a direct relation
ship between the global and local quantities, it is diffi
cult to determine any restrictions on the properties of 
the global quantities. 

This situation leads one to speculate on the rather 
exotic possibility of extracting an unlimited amount of 
energy from an isolated system. 1 First, such a possi
bility arises if a nonsingular, asymptotically flat space
time with physically reasonable matter (positive local 
energy density) is allowed to have negative total energy. 
Second, such a possibility arises if one can create a 
naked singularity starting with physically reasonable, 
nonsingular initial conditions, (Roughly speaking, a 
naked singularity is a singularity which can be "seen" 
from infinity. One cannot predict what will come out 
of a Singularity, and thus one would not expect there 
to be a limit on energy extraction if a naked singularity 
were present.) However, there is evidence for the fol
lowing conjecture: Spacetimes with either of the above 
described properties cannot occur in general relativity. 
In the first case this is known as the positive energy 
conjecture; in the second case, it is known as the 
cosmic censor hypothesis. 

The common feature of the possibility of unlimited 
energy extraction suggests that these two conjectures 
might be related. In particular, it is even conceivable 
that the truth of the conjectures-if, indeed, they are 
true! -might just be two different aspects of one struc
tural feature of general relativity. In this paper, we 
will find some evidence that this might be the case. We 
shall show that a slight modification of Geroch'sl argu
ment for the positive energy conjecture rules out a 
class of counter-examples to the cosmic censor hypo
thesis proposed by Penrose. 2 

In Sec. 2, we shall state the positive energy conjec
ture. Geroch's argument indicating that the total energy 
must always be positive as reviewed in Sec. 3. In Sec. 
4 we describe a class of possible counterexamples to 

the cosmic censor hypothesis. We show in Sec. 5 that 
in the time symmetric case, these counterexamples are 
ruled out by a modification of Geroch's positive energy 
argument. 

2. THE POSITIVE ENERGY CONJECTURE 

An initial data set for a spacetime consists of a three
dimensional manifold S on which there are given a posi
tive-definite metric qab' a symmetric tensor field pab 
(the extrinsic curvature), a local mass density iJ., and 
a local current density Ja. These fields on S must obey 
the constraint equations 

R - pabpab + p2 = 2}J., 

Da(pGb _ pqab) = Jb, 

(1) 

(2) 

where R is the Ricci scalar of the metric qab' P is the 
trace of pab, and Da is the covariant derivative operator 
with respect to the metric qab' Furthermore, iJ. and Ja 
must satisfy the local energy condition 

iJ. ~ (rJa) 1 I 2 • (3) 

An initial data set is said to be asymptotically flat if 
in the asymptotic region the metric qab approaches the 
Euclidean metric not slower than l/r and pabPab ap
proaches zero not slower than l/r\ where r is any 
typical radial distance. (A more precise definition of 
asymptotic flatness at spatial infinity is given by 
Geroch. 3) From now on, an initial data set is always 
assumed to be asymptotically flat. 

With any (asymptotically flat) initial data set there is 
associated a number E whose physical interpretation is 
the total mass-energy of the system, including the con
tributions both from matter and gravitational field. This 
number E is called the Arnowitt-Deser-Misner (ADM) 
energy. E is obtained by performing a flux integral over 
a topological 2-sphere in the asymptotically distant re
gion. Although there are various forms of this flux in
tegral, they all give the same value for an asymptotical
ly flat initial data set. The most convenient form of this 
integral for our purpose is the following: 

Al/2 J 
E = 641Tffl (2R - 'P) dA, (4) 

where A is the area of the integration surface which 
asymptotically approaches a metric sphere in the 
asymptotic region, R is the intrinsic scalar curvature 
of the integration surface, and P is the trace of the ex
trinsic curvature of the integration surface as a sub
manifold of S. 
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We now state the positive energy conjecture: 

Positive energy conjecture: For a nonsingular 
asymptotically flat initial data set (i. e., all fields on 
S are smooth and S is complete in the Riemannian 
metric qab), the ADM energy E is nonnegative and van
ishes if and only if the initial data set is that of 
Minkowski space. 

3. GEROCH'S POSITIVE ENERGY ARGUMENT 

Geroch1 has given an argument to establish the 
validity of the positive energy conjecture for an initial 
data set with S having topology 1R3 and with p = 0, i. e. , 
vanishing trace of extrinsic curvature. In this case, 
Eqs. (1) and (3) imply that R ~ 0, and this is the only 
fact derivable from Eqs. (1)-(3) which we shall need. 

We introduce a function t on S such that the two
dimensional surfaces t = const in S are nested topologi
cal 2-spheres with the innermost surface reducing to 
a point. For each value of t, set 

j(t) = j(2R - 'p2)dA, (5) 

where the integration extends over the surface t = const 
and Ii and p denote the scalar curvature and the trace 
of the extrinsic curvature of the surface t = const, 
respectively. Note that by the Gauss-Bonnet theorem 

(6) 

We define a scalar field cp on S by cpraD.t= 1, where r a 

denotes the unit outward vector field normal to the 2-
surfaces. Then, using the Gauss-Codazzi equation and 
the Gauss-Bonnet equation, the rate of change of j(t) 
with respect to t is1 

where Do is the covariant derivative operator on the 2-
surfaces with respect to the induced metric. Next, we 
choose1 the 2-surfaces such that 

cpp= 1. (8) 

Then, Eq. (7) becomes 

d~ j(t)=-if(t)+ /[R+(pabPab_~pz)+2cp-2.5aCPDacp]dA 

~ - tf(t). (9) 

But since j(t) - 0 as the surfaces reduce to a point, Eq. 
(9) impliesf(t)~ 0 for all t. By Eq. (4) we have E ~ O. 
Equality holds (i. e., E = 0) only if pao == 0 and qab is flat, 
i. e., initial data for flat space. 

The above argument fails to be a full proof of positive 
energy conjecture (even in the case S == 1R3

) for two im
portant reasons: (1) The simplifying assumption p == 0 
has been made. However, there is some eVidence4 for 
believing that all nonsingular, asymptotically flat space
times must contain at least one asymptotically flat slice 
with p == O. If this is true, then a proof for the p = 0 case 
would prove the positive energy conjecture for all non
singular spacetimes. Even so, one would still want to 
establish the positive energy conjecture in the stronger 
form given above in Sec. 2 (i. e., one would like to 
prove that an initially regular spacetime must have 
E ~ 0 even if it develops singularities later). (2) At 
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present, no proof has been given that the family of sur
faces required in the above argument actually exists. 
Some intuitive arguments suggest that starting from a 
point the evolution equation </> = p-l will always generate 
a smooth family of surfaces which asymptotically be
come metric spheres at infinity [so that Eq. (4) applies]. 
However, this has not been proven. Indeed, when mini
mal surfaces (p = 0) are present on S, difficulties with 
the surface evolution can occur, though the modifica
tion of the argument given below in Sec. 5 appears to 
take care of these difficulties. 

4. PENROSE'S PROPOSED COUNTEREXAMPLE TO 
THE COSMIC CENSOR HYPOTHESIS 

Several years ago, Penrose2 proposed a test of the 
cosmic censor hypothesis and other commonly held be
liefs concerning gravitational collapse. His argument 
(generalized somewhat) runs as follows: Consider a 
spacetime in which gravitational collapse takes place. 
If cosmic censorship is right, the collapse should 
produce a black hole which should settle down to a 
stationary final state. From the theorems of Israel, 5 

Hawking,6 and Robinson, 7 the only stationary vacuum 
black holes are the Kerr solutions. The formula for 
the area of a Kerr black hole is 

(10) 

where M is the mass of the black hole and J is its angu
lar momentum. 

ConSider, now, the initial data for this spacetime on 
some earlier spacelike slice S (e. g., at a dynamic 
phase of collapse). By the Hawking area theorem8 (which 
is based on cosmic censorship) the initial surface area 
Ai of the horizon cannot be larger than the final area, so 
that 

(11) 

Furthermore, since the energy carried off to infinity 
by radiation cannot be negative, we have 

M~E, (12) 

where E is the ADM energy of the initial data set. Thus, 
we obtain 

Ai ~ 167TE2. (13) 

This inequality is not very useful since we must 
know the entire evolution before we can determine the 
location of the event horizon on S. However, we can ob
tain a more useful inequality as follows: The apparent 
horizon II is defined as the outer boundary of the region 
of S which contains trapped or marginally trapped sur
faces. II itself must be a marginally trapped surface, 
and thus it satisfies 

(14) 

where p is the trace of the extrinsic curvature of II as 
a sub manifold of Sand r a is the unit outward normal to 
II on S. One can show9 that II must be a topological 2-
sphere (or a disjoint union of spheres) and must neces
sarily lie inside of (or coincide with) the event horizon. 
Let A denote the greatest lower bound of the area of sur
faces which enclose II. Then clearly A ~ Ai and, thus, 

(15) 
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This equation relates quantities which are determined 
directly by the initial data on S. 

Penrose's idea was to find an initial data set which 
violates Eq. (15). If such a data set exists, something 
must be seriously wrong with the assumptions which 
went into the above derivation of the inequality. The 
cosmic censor hypothesis is by far the weakest link in 
the above derivation, so if a data set is found which vio
lates Eq. (15), it almost certainly will provide us with 
a counterexample to the cosmic censor hypothesis. Of 
course, the validity of Eq. (15) for all initial data sets 
would not imply that the cosmic censor hypothesis must 
be true. 

Penrose2 originally proposed the above test of the 
cosmic censor hypothesis in the context of the collapse 
of a shell composed of null fluid, with the spacetime 
flat inside the shell and with the shell coinciding with 
the apparent horizon at some instant of time. He and 
Gibbons ruled out the existence of violations of the above 
inequality in a wide class of cases, though they did not 
succeed in ruling out all possible counterexamples of 
this type. 

The general context outlined above is difficult to 
analyze because there is no simple expression for A. 
This situation improves considerably in the case of 
time symmetric initial data (pab = 0). By Eq. (14), the 
apparent horizon is a minimal surface, p = O. Hence, 
in this case A is simply the area of the apparent horizon. 

The case of time symmetric, vacuum, initial data 
with qab conformally flat was analyzed in detail by 
Gibbons, 10 who showed that it is very unlikely that one 
could obtain a violation of Eq. (15) with such data sets. 
In the next section we show that a modification of the 
argument of Sec. 3 rules out-subject to the existence 
of the family of surfaces used in the proof-the possibil
ity of obtaining a violation of Eq. (15) with any time 
symmetric initial data set whose apparent horizon con
sists of a single component. 

5. NONEXISTENCE OF A CLASS OF PENROSE 
COUNTEREXAMPLES 

Consider a time symmetric initial data set whose 
apparent horizon H has only one component. As previ
ously remarked, H must have the topology of a sphere. 
Consider a nested family of 2-spheres analogous to those 
used in Sec. 3, but now with the property that the sur
face defined by t = 0 is H. The family of surfaces for 
t> 0 is again defined by the equation 

¢p=l. 

As in Sec. 3, we assume such a family of spheres 
exists and that as t _00 the surfaces asymptotically 
become metric spheres in the asymptotic region. 

Setting 

Jet) = f (2R - ii) dA, 

we find again 

t!1 1 
dt ;?- - 2/, 
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(16) 

(17) 

(18) 

i. e., 

d 
dt [exp(t/2)/];?- O. (19) 

On the other hand, the rate of change of the area A(t) 
of the t = const surfaces is given by 

:t A(t) = f p¢dA = fdA =A(t). (20) 

Thus, we find 

A(t) =C exp(t). (21) 

Since, the surface t = 0 is just H, we have 

C =A (22) 

whereA is the area of H. Equation (19) now implies 

~i_~ ~::~t) /(t) ;?-/(0). (23) 

Since H is extremal (p = 0), by the Gauss-Bonnet 
theorem we have 

/(0) = 161T. (24) 

On the other hand, by Eq. (4), the left-hand side is just 

A1/2(t) 641T3/ 2 

lim -;rrrr let) = -;rrrr E, 
t ~c 

where E is the ADM energy. Thus, we obtain 

641T3/ 2 E 
AlIt ;?-161T, 

i. e., 
A ~ 161TE2 

which is just Eq. (15)! 

(25) 

(26) 

(27) 

Thus, we have found that a modification of Geroch's 
positive energy argument shows Penrose's inequality, 
Eq. (15), cannot be violated in this case. An exactly 
similar modification of Jang'sl1 positive energy proof 
for the spherically symmetric case establishes 
Penrose's inequality for that case also. It will be inter
esting to see if further relationships exist between the 
positive energy conjecture and the cosmic censor 
hypothesis. 12 
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5 also applies to an axisymmetric initial data set which is 
invariant under simultaneous reflection of the axial Killing 
field and the normal to the hypersurface. In this case the 
apparent horizon H is again a minimal surface, p = 0, and 
so again one can show /{ 0; 1671' E2. Actually, since angular 
momentum J cannot be radiated away in an axisymmetric 
spacetime, one would like to prove the stronger relation 

/{ 0; 871'[E2 + (E4 - J 2)1/2] if the spacetime is vacuum outside the 
apparent horizon; however, we have not succeeded in showing 
this. 
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A set of six canonical parameters is derived for the 6 j coefficient in a way analogous to that used 
previously for the 3j coefficient. The procedure involves implicitly a twelve-to-one homomorphism which 
reduces the known 144-e1ement symmetry group to a 12-e1ement group. The symmetries are completely 
and elegantly described by only five of the six parameters. A further property of the canonical parameters 
is their complete independence. 

In a previous note, 1 a set of canonical parameters 
was demonstrated for Wigner's 3j coefficient. The 
parameters were shown to possess unique properties, 
in comparison with other known parameters. In the 
following, an entirely analogous result will be shown 
for the 6j coefficient. Needless details of the derivation 
will be omitted, inasmuch as it runs quite parallel to 
that of Ref. 1. 

Wigner's 6j coefficient may be considered to be de
fined by the equation2 

l j, j2 j3l 
. . . '= (6J) = t"(j"j2,j3)t,,(j,,jS,j6) 

J4 Js J6 

x (t - j2 - j4 - .i6) ! (t - j3 - j4 - js)! ]-1, 

where the triangular function t" is defined as 

t,,(x z) = ((X +y - z)! (z +x - y)!(y +z _X)!)1/2 
, y, (x + y + Z + 1) ! 

(1) 

(2) 

if the argument of each of the factorials is a nonnega
tive integer, and t,,(x,y, z)=O otherwise. It should be 
noted that the j's, while in a sense independent, are 
nonetheless mutually constrained by the four triangular 
functions occuring in Eq. (1), 

To obtain the canonical parameters, a set of seven 
intermediate parameters is defined first, as follows: 
Pl=j2+j3+jS+j6' P2=jl+j3+j4+j6' P3 =jl+j2+j4+jS' 
ql=jl+jS+j6' q2=.i2+j4+j6' q3=j3+j4+j5' andq4 
=jl + j2 + j3' In terms of the P's and q's, Eq. (1) may be 
cast into the following particularly symmetrical form: 

(6J)= n n ~~ 
( 

3 4 (p )' ) 1/2 

i=l k=l (qk + I)! 

X~(-I)t(t+l)!C~l k~' (Pi-t)!(t-qk)!) -I. (3) 

Each of the P's and q's must be a nonnegative integer, 
and none of the p's may be smaller than any of the q's. 
The index t runs from the largest q up to the smallest 
p. 

The obvious invariance of Eq. (3) under all permuta
tions of the three p's and of the four q's shows the 6j 

coefficient to possess a 144-element symmetry group, 
as was first noted by Regge, 3 who also pointed out that 
the symmetry group is isomorphic to the direct product 
of the permutation groups of three and four objects. A 
24-element subgroup is simply represented in terms 
of physically Significant interchanges among the j's. 

The remainder involve replacing certain j's by algebraic 
expressions involving the original ones. 

Before the canonical parameters can be defined, the 
P's and q's must be placed in ascending order. There
fore, let Px"; P,"; pz and qw"; qx"; qy"; qz.4 Then the canon
ical parameters are defined as follows: n = Px - q., 
a=qz-qy' b=q.-qx, c=q.-qw, d=py-P" and 
e=pz-px' These six defining equations may be used 
to eliminate all but one of the p's and q's in Eq. (3); 
suppose that only qz remains. The summation index t 
is then replaced by qz + s. The limits of the sum over s 

are thus from zero to n. The parameter qz may then 
be eliminated by taking advantage of the fact that 

(4) 

Hence qz=3n+a+b+c+d+e. Therefore, finally, the 
6j coefficient may be expressed as follows: 

(6J)=PRT, (5) 

where 

and 

p == (_ 1 )n+a+b+c+d+e , (6) 

R = In ! (n + a) ! (n + b) ! (n + c) ! (n + d) ! (n + e) ! 

x (n + a + d) ! (n + b + d) ! (n + c + d) ! 

x (n + a + e)! (n + b + e)! (n + c + e)! p /2 

x [(3n + a + b + c + d + e + 1)! (3n + b + c + d + e + I)! 

X(3n +a +c+ d+ e + 1)!(3n +a +b +d+ e+ 1) !]-1/2, 

(7) 

T = t (- 1)S(3n + a + b + c + d + e + s + I)! [s! (s + a)! 
s=o 

x (s + b)! (s + c)! (n - s)! (n + d - s)! (n + e - s)! ]-1. 

(8) 
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Equations (5)- (8) show that the 6j coefficient, when 
expressed in terms of the canonical parameters n, a, b, 
c. d. and c. is invariant under any permutation of a, b, 
and c, or of d and c. Therefore, a 12-element symmetry 
group is evident. which may be expressed as follows: 

(6J)(n; a, b, c; d, c) 

= (6J)(n; a, b, c; e, d) = (6J)(n; b, a, c; d, e) 

= (6J)(n; b, a, c; c, d) ~ (6J)(n; a, c, b; d, e) 

= (6J)(n; a, c, b; c, d) ~ (6J)(n; c, b, a; d, e) 

= (6J)(n; c, b, (I; c, d) = (6J)(n; b, c, a; d, e) 

= (6J)(n; b, c, a; e. d) ~ (6J)(n; c, (I, b; d, e) 

= (6J)(n; c. a, b; c, d). (9) 

By means of arguments similar to those used in Ref. 
1. it may be shown that this group is entirely equivalent 
to the 144-element symmetry group shown to exist by 
Regge. Thus the ordering of the p's and q's, and the 
subsequent definition of the canonical parameters, gives 
rise to a twelve-to-one homomorphism, in a way simi
lar to that shown previously for the 3j coefficient. 
Moreover, as before, the parameter n does not enter 
into the symmetry operations. 
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Another important property of the canonical param
eters is that they are completely independent. Each 
must be a nonnegative integer, but there exist no rela
tionships among them which must be satisfied, as was 
the case with the j's, as well as with the p's and q's. 

It can be seen that the 6j coefficient will vanish only 
if the factor T does so. Inasmuch as the terms are of 
alternating Sign, the sum may be equal to zero; how
ever, there are no obvious simple relationships among 
the parameters which will necessarily give rise to this 
result. 

The physical significance of the canonical parameters 
remains unclear at present. Their relative mathematical 
elegance, however, in comparison with other known 
parameters, is obvious. 
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de Oriente. 

lL. Loch'wood, J. Math. Phys. 17, 1671 (1976). 
2See, e. g., A. de-Shalit and 1. Talmi, Nuclear Shell Theory 
(Academic, New York, 196:3), p. 139. 

3T. Hegge, Nuovo Cimento 11, 116 (1959). 
lAt this point it is necessary only that Px be the smallest of 
the p's and that q. be the largest of the q's. 

Loren A. Lockwood 46 



                                                                                                                                    

Nonstationary multiple scattering 
A. P. Wang 

Department of Mathematics, Arizona State University, Tempe, Arizona 85281 
(Received 12 July 1976) 

This paper is devoted to the abstract formulation of the general nonstationary multiple scattering problem 
in radiative transfer. We consider the linear operators on curved surfaces. Therefore, the problem is 
attacked from the unified and general point of view. Special geometric considered are spherical shells and 
slabs. Special cases lead to stationary, instantaneous, and time invariant cases. The extension from 
stationary to nonstationary involves the distribution theory and the concept of non predictive operators. 
Many well- known physical problems in astrophysics are solved in the unified way. 

I. INTRODUCTION 

Nonstationary radiative transfer problems are rela
tively unexplored because of the difficulty of their 
mathematical treatmenL Nevertheless, it is generally 
recognized that nonstationary radiative transfer in 
terrestrial plantary and stellar atmospheres should be 
taken into account for the treatment of particular 
transient phenomenao A comprehensive list of refer
ences concerning previous results on nonstationary 
transfer problems up to 1970 can be found in Refso 1-3. 

In 1926 work on nonstationary radiative transfer was 
carried out by Milne and Chandrasekhar 0 4 In these 
studies the nonstationary radiation field is considered 
to be governed principally by various decay rates. At 
the same time the problem of radiation through an ab
sorbing medium in motion was treated by Rosseland. 5 

The general nonstationary multiple- scattering problem 
was relatively unexplored until around 1960. 

A paper by Preisendorfer6 in 1958 indicates that the 
method of the principle of invariance initiated by Am
barzumian and Chandrasekhar can be extended to the 
nonstationary case in a slab or plane-parallel media. 
At the same time, Bellman, Kalaba, and Ueno have 
systematically applied the invariant imbedding tech
nique to a wide variety of transport problems of prac
tical interest in the field of radiative transfer, neutron 
diffusion, wave propagation, and so on. Some of their 
results on nonstationary transport problems in a slab 
are presented in Refs. 1, 2, 7, and 8. A more recent 
work by Redheffer and Wang3 presented a formal ex
tension from stationary to nonstationary scattering 
from a unified point of view. It introduced the nonsta
tionary star product, the nonpredictive operators, and 
some mathematical properties of such systems. How
ever, it is still limited to the slab or plane-parallel 
media. 

There are many physical problems in which curved 
surfaces must be taken into consideration. This has led 
to the study of stationary radiative transfer in spherical 
media, by Bellman, Ueno, et al., (1968) 9 and Wang 
(1970).10 A comprehensive list of references can be 
found in those two papers. From the astrophysics point 
of view these two papers have succeeded in solving the 
Chandrasekhar problem in a spherical shell, SChuster's 
problem in the theory of line formation, and the Milne 
problem of the diffusion of light from a central star. 

It is obvious that the time is due to consider the non-

stationary multiscattering problem by taking curvature 
into consideration. This paper is devoted merely to the 
formulation of those problems. As in Refs. 3 and 10, we 
attack the problem from a unified viewpoint, L e., the 
linear nonstationary operators. General results are 
presented for curved surfaces. Special geometrics con
sidered are spherical shells and slabs. In case the 
linear operators are stationary, the former leads to the 
results of Refs. 9 and 10. The latter leads to the results 
of Ref. 3 0 The general nonstationary operator consists 
of three special cases, namely stationary, instantaneous 
nonstationary, and time invarianL The mathematical 
properties and their solutions w ill be discussed in our 
next paper. 

II. FORMULATION 

Let us consider a one-parameter (in space) family of 
general radiation field no In this field I(x, ± U, t) E: n is 
the intensity4 in a specific frequency at position x, in 
direction ± ll, and in time t. For a linear system of 
radiative transfer, input intensity Ii and output intensity 
10 are related by 10 = L 0 Ii> 10, Ii E: n, where 0 signifies 
the bounded operation under the linear operator L. In 
nonstationary radiative transfer, if the input is given 
by I(x, u, t), the diffused outputs are I*(y, v, t) and 
1* (x , - v, t), and specular output is II( y, v, t), then in 
our operator notation we write: 

1*(y,v,l)= T(x,y;v, u;t, T).I(x,y,T), 

1* (x, - v, t) =p.. (x, y; - v, u; t, T) • I(x, u, T), 

and 

II(y, v, t) =P(x,y;v,u; t, T)' I(x, u, T). (II. 1) 

It was introduced in Ref. 3 that such nonstationary 
operators may be formally represented by integral 
forms. For example, 

1*(y,v, t) = J
0

1 

1~ P(x,y; v,u; t, T)l(x,y, T)dT~U, 
(1I0 2) 

where P(x, y; V, u; t, T) is the kernel associated with the 
operator T. Likewise, associated with operators p.. and 
p, we have kernels 

P(x ,y; - v, u, t, T) and A(x,y; v, u; t)o(v* - u)o(t - T), 

(II. 3) 

where 0 is the Dirac delta, v* = v* (x, y, u), v* - v as 
y - x, and 
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£1 dv 
(P' I)(V, V, I) = A(x, y; V, u; t)/(x, y, T}O(V* - U)-. 

o v 

(II.4) 
In a more careful discussion of such operators, 

mathematical distribution theory should be used. For 
example, Eq, (II. 2) may be interpreted as a regular 
(double) distribution with respect to variables to T and 
ll. Furthermore, it is necessary that T be a a-gen
erating function, L e., take the identity operator as a 
limit in space, More precisely, P(x,y;v,u;t, T) 
-a(l''''-u)a(l- T) as.v -x, AndR and P are zero opera
tors as y - x. For more details, see Refs. 3 and 10. 
With this in mind, there are certain properties in the 
distribution theory used in the analysis which will be 
pointed out in the derivation. We assume that all kernels 
are differentiable in the sense of distribution theory, 

In Ref. 3 the "nonpredictive operators" were in
troduced. A pair of linear operators (J,C) are non
predictive if) t' C; + ) . C; T == 0, where the subscript de
notes the partial derivative with respect to time t and T, 

and the product is defined by 

() .g)(x,J';v,u;t, T) 

J 1J'~ . = -1 _",F(X,-";l',w;t,~)G(x,Y;W,U;~,T)d~dw. 

It has been pointed out that an operator, with the prop
erty that output depends only on the past input, has the 
nonpredictive property. Usage of such properties also 
will be pointed out in the derivation. 

As in the stationary case the derivatives of P, Q, 
and A with respec t to the space variable x, at x = y, 
are phase functions p(x; ± v, ± u; t, T) and extension co
efficients a(x; I)o(v* - u), The parameters t and T 
signify nonstationary. The optional depth used in the 
stationary case cannot be easily extended; therefore, it 
defeats its original purpose. In view of the integral 
form (II.2), we can introduce a function which mea
Sures the total diffused output versus its input up to 
time t, 

C(x,y;u, [)= J.~f-: P(y,x; 1',U; t, T)/(x,y, T)dvdT 

i t J'1 1 x[ _'" Q I(x,u, T)dudT1- . (11.5) 

The nonstationary albedo of single scattering is defined 
as 

a(x,u, t) = lim (1/ A)C(x,x + A,u, I). 
6~0 

(II. 6) 

As a consequence a new phase function p is defined, 

a(x, ± u, t)P(Y;± v,±u; t, T) =F(y; ±v, ±u; t, T) 

for a(x, ± u, t) * 0; otherwise P = O. 

III: EQUATIONS OF TRANSFER AND EXAMPLES 

(II. 7) 

Let us consider the transfer of radiation taking place 
in a thin medium where x and y =x + AX are two bound
ary points. For AX small, the input intensity at x is 
l(x, u, t); then the total intensity at y is 
l(x + AX, u + Au, t + At), where 1=1* + II. The difference 
in total intensities is due to attenuation, absorbing and 
scattering. 

As in Refs. 2 and 3, Au and At are functions of AX. 
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Taking the limit as AX - 0, the equation of transfer 
for the total radiation field is 

d 
udxl(x,±u,t)=- Q(x,±u;t, T).!(X,±u, T) 

= il(J(X,V,f)P(x;±U,v;t, T)./(x,v, T)dv. 
-I 

(Ill. 1) 

The right- hand side of the equation in the abstract form 
involves the operation' as introduced in (n.2), 

To give some feeling about the abstract operator and 
the equation transfer, we shall present a few solid ex
amples which include some well-known ones in the field 
of radiative transfero The following examples are 
presented for two physical geometrics, namely a slab 
and a symmetric spherical shell, along with some spe
cial interpretations of the 0 operation. 

For the spherical shell geometry, I=l(r,u,f), where 
r denotes a point on the sphere with radial coordinate 
r, Yo:S r :sxo• The intensity in the total radiation field at 
r directed toward the outSide surface at time f is de
noted I(r, - u, I), and the intensity of the inward directed 
radiation is I(r, u, f). And 

1'''' =v*(x,y,u)=[I- (x/y)2(1_1,2)]1/2, 

as introduced in Ref. 2, along with 

v", = v*(x, y, 1') = [1 - (y/x)(1 - v2)11!2 

and 

(1'*)" = (1'*)"" 

Then we have the equation of transfer for a spherical 
shell 

dl 1_u2 

-d =lr±--lu+!l*It , r ru 
(Ill. 2) 

where 1=/(r,±u, t) and the subscripts of I denote partial 
differentiation o The 11. denotes the inverse of the out
ward propagation constant and the Il. denotes that of the 
inward one. The detailed analysis is an easy extension 
of that given in the stationary case10 ; therefore, it is 
not presented here. 

For a slab geometry case 1= l(z, ± u, f), we merely 
replace the radius by the physical thickness z,xo:S z :s Yo 
and u=u*=u*. There, the second term in (III. 2) dis
appears. The result is, for I=I(x,±u, f), 

(III. 3) 

\\ith the above geometry in mind, we are ready to 
formulate the equation of transfer under various inter
pretations of the . operation, 

A. Case 1. Stationary case 

The case under consideration is that 1= l(x, ± u) which 
is independent of time t. Thus, there is no time delay 
between any input and output pair, and the kernels have 
the form 

a(x,±u, t, T)=a(x,u)o(l- T) 

and 

P(x,±u,±v;t, T)=P(x,±u,±v)6(I-z), 
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where the 0 acts like the identity under the integral 
representation. Therefore, we can write 

a(x,± u; t, T)' l(x,± u, T) = a(x,± u)l(x,± u), 

P(x; ±u, ± v; t, T)' l(x, ± v, T) =P(X;± u, ± v)l(x,± v), 

and a(x, t) =a(x), Then the equation of transfer for a 
spherical shell reduces to 

(u~± 1- u
2 ~)l(r ± u) 

or r au ' 

=- a(r,±u)l(r,±u) +a(r) il p(r,±u, v)l(r, v)dv, 
-1 

(III, 4) 
and the equation of transfer for a slab is 

a 
oz l(z, ±u) =- o(z, ±u)l(z,±u) 

+ a(r) 11 P(z, ± u, v)I(z, v) dv, 
-1 

(III, 5) 

Where a, a, and p are customarily called the attenua
tion (or extinction) coefficient, the abortion coefficient 
and the phase function in stationary case, If Eqs. (III. 4) 
and (III, 5) are subject to uniform boundary conditions 
and a, a, and P are homogeneous with respect to r or z 
whichever the case may be, then (III, 4) and (III. 5) have 
the exact form and meaning as given by Uenos and 
Chandrasekhar 0 4 

B. Case 2. Instantaneous nonstationary case 

The extinction coefficients, and absorption coeffi
cients phase functions, in this case are functions of 
time t. They are products of oCt - T) and nonstationary 
functions, i. e, , 

a (x, ± u; t, T) = 0 (X, ± u, t) 0 (t - T), 

P (x , ± v, ± u, t, T) = P (X, ± v, ± u, t) 0 (t - T). 

As in the previous case, the operations . reduce to the 
multiplication of functions. Therefore, the integral 
representations with respect to time disappear as in the 
stationary case. The analysis is an easy extension of 
that for the stationary Case. The equation of transfer 
has the form 

(
a 1- u2 a (J) u- + -- -- + Jl - l(r ± u t) 

or r au • 01 ' , 

= 0 (r, f)l(r, ±u, f) + a(r, t) J 1 per, ± u, v, flIer, v, t)dv 
-1 

(III. 6) 
for the spherical shell geometry and 

(u:z + :f)I(Z,±u,t) 

== Q (z, t)l(z, ± u, t) + a(z, t) i 1 P(z, ± u, v, t)l(z, v, t) dv 
-1 

(1110 7) 

for the slab geometry, Equation (N. 7) agrees with re
sults obtained in Refs. 2 and 6. The resUlt of (III. 6) is 
new, as far as we know, 

C. Case 3. The time-invariant case 

Operators in our general formulations depend on the 
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absolute values of two times, In this special case, we 
assume that these operators are functions of the differ
ence of two times, L e. , 

a (X, ± U, t, T) == 0 (x, ± U, t - T) 

and 

p(x,± U, v, t, T) =p(x, ±U, v, t - T), 

The equations of transfer can be obtained immediately 
by replacing the linear operation . by the convolution 
operation *. The slab geometry case was discussed in 
Ref. 10, and the spherical shell case is again a new 
result. 

IV. TRANSMISSION AND REFLECTION 

The differential equations for the transmission and 
reflection operators may be obtained when a thin layer 
is added to a given medium, This can be accomplished 
either by the method of particle counting or by the 
method of medium coefficients. The approach used 
here follows from the latter method. 

The scattering matrix for the nonstationary case has 
the form 

(;~) +(~ ~), (N.l) 

where the first term is the diffuse part and second is 
the specular part. They are different from the stationary 
case in the sense that they involve the pair (t, T) as pa
rameters and they admit an integral representation 
(11.2). The operators T, «" and P have been introduced 
in (11.1) while operators W, V, and Q have kernels 

P(x, y; - v, - u; f, T), P(x, Y ; v, - u; t, T) 

and 

A(x,y; - v, - u)(u - u), 

respec ti vely. 

The method we shall use is to compare a given scat
tering matrix to that with a thin layer attached, then 
take the limit. It is noted that we do not assume that 
operators are commutative and the 0 operator is in
volved in our integral representation. Therefore, we 
cannot assume that the limits of a left-hand and a right
hand operator under the composite operation [e. g. , 
(N. 2)] are the same. For example, letH be an arbi
trary operator; we shall compute limits of o(v* - u) • H 
andH·o(v*-u), wherev*=v*(y,z,v), andHis inde
pendent of y. We compute 

~ [o(v*-u)'H]=~(v*-u)'H+o(v*-u). ~H 
uZ (Jz (Jz • 

As in Ref. 11, the symbolic function 0 is differentia
ble and changing of variables is allowed; therefore, 

~O(v*-U)'HI =o'(v*_u)ov*'H\ 
(Jz z.~ iJz YO" 

(Jv* I iJ = - -,,- o(v - u) . - H, 
uZ z.y av 

(N.2) 

where we also used the property that o(v* - u) - o(v - u) 
as y -x. 
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For the spherical geometry case, see the previous 
section. After some trival computation, the above re
sults (IV. 2) leads to 

..i.-(O(Z'*-U).Hll =_0(l'_U).(1-
V2

..i.-H) 
az z=~ yv al' 

(IV. 3) 

For the slab geometry case, the specular part of the 
intensity travels in a straight line. Its parameter u re
mains the same. Therefore, v* is independent of y and 
(IV. 2) reduces to 

a 
-o(l'-u)·--H al' . (IV. 4) 

To compute the derivative of H· 0(1'* - u), we observe 
that apart from O( 11'* _ L'1 2), 

H· 0(1'* - 11) ==H' (II(L' - u) + (1'* - v) :v 0(1' - U»), 

where we used the limiting property of v* as stated in 
Sec~ It Since (1' - u) is independent of z, the first term 
in the right- hand side of the above equation disappears. 
Therefore, 

a a a 
- (H· 0(1'* - lI)l = - (H· (v* - v)-- 6(1' - u)l 
ilz I az ill' 

= :z [- :1'H ' (1'* - 1')0(1' - u) 

- H· (:1' (1'* - 1'»)6(U - It)] 

== - (~-H . ~ (1'* - v) 
a1' az 

+H· a::-V (1'* - 1'))' 0(1' - u), 

It should be noted that the analysis also applies when 1'* 
is replaced by 1'*. 

For the spherical case, we obtain 

a I [ 1 + u
2 

1 - u
2 

-(H·6(v*-u)l =-I,*'-u) --2 +--
az z=~ yu :)'U 

details are not presented here. When v* is replaced by 
1'*, the right-hand side merely changes sign. For the 
slab geometry, the right- hand side of the above equa
tion reduces to the same expression as (IV. 4), because 
v* == 1'* == v and 6(1' - u) commutes with every operator 
under consideration, 

Let us construct the differential operator equation 
which governs the system, This is done by taking two 
scattering matrices, one extended from (x,y +~) and 
the other from (x,y), and then taking limit as ~-O. To 
avoid boring the reader with long and complicated, but 
straightforward details, we merely present our results. 

The specular operators P and Q satisfies the differen
tial equations 

(..E.- + iJ.l...)P=B. P ay at 

and (IV. 6) 
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where iJ. = IJ.. and v== Il_ and operators B ==B(y; lI, u) and 
D=D(y, - v;u) are 

B· = il_ [0(1'* - u) . II 
az z.~, 

.jj=~(.6(v*-u)1\ • 
az z_~ 

As for the diffuse operators, we use 

a a 
H-·=- -H· at aT' 

the nonpredictive properties as introduced in Ref. 10. 
These diffuse operators are governed by 

(1- + 1J.l...)T == (b + p. c)· (T + P) - B, P 
ay at ' 

(
il a Cl) -- + ~( - - v-- W == a + b • W + W . d + W • c . W av at aT' (IV. 7) 

and 

(il_ - v1-) V = (V + rJ) , (d + c 'W) - rJ , jj a.v aT <:: < , 

where 

(db ~)=(B + b* i!. + b*)(b* a) 
d D + d* D + d* c d* 

and 

B:==B(y,v,u), D=D(y,- V,-II), 

- a 
'B = az [. 6(1'* - u)l.o=~, 

pH =PCv; ± v, xu; i, T), 

Special cases 

Case 1. Stationary case 

The associative operators P and intensities I are in
dependent of time, and we may assume that the kernel 
of P has the form P(y, x; 1', u)6(t - T) and all operations 
can be expressed as a single integration with respect to 
w, see (It 2). Since operators are independent of time, 
all terms involving a/at and a/aT in (IV, 6) disappear. 
By use of (IV, 4), (IV. 5) and remarks following (IV. 5), 
we obtain the results for spherical symmetry presented 
in Ref 10. This in turn leads to the well-known results 
for Sl~b geometry in the stationary case, in which D:== jj 
and B :==B. 

Case 2. Instantaneous nonstationary case 

The kernel associated with the operator P has the 
form P(x,y;v,u;t- T)6(t- T). Similar to case 1, all op
erations are reduced to a single integration. But since 
P depends only on the difference of t and T, say h, the 
partial differential in (IV, 6), can be reduced by 
observing 
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ap ap ap 
ai=aTl=- aT' 

By the results of (N, 3) and (N.4), the equations of a 
spherical shell for p and e have the form 

(
l.... + l....)p_ (a(y) + 1- v2l....)p 
ay /1. ah - - av yv or ' 

(..i.._vl....) =_ fa(y) _1+u
2
_1-u

2..i..) 
ayah Q Q \ U u2y yu au ' 

where the kernels P=P(x,y;v,u;h) and Q 
=Q(x,y;-v,-u;h). As for diffusion, we merely write 
down those for T and W in the spherical shell geometry; 

2 ( a a Q (v) 1 + u2 1- u2 a ) --- -+/1.-+---- -- +-- - T(x)"v w-h) 
a(y,h) ayah 1{ yu2 yu au ,," 

11 ~ 
- P(y'V w'h)T(x y'W wh)-
- 0 '" "" w 

+ il 10 1 
W(x,y;v,w;h)P(y;w,w;h) 

- dw dw 
xT(x y'w v'h)-- -=-

, , " u' w 

[1 dw 
+ J

o 
P(y;v,w;h)P(x,y;w,v;h)-u; 

+ il i 1 
P(x,y;v,w;h)P(y;w,w;h) 

xP(x,y;w,u;h)dw div 
w 

and 

2 ( a a 1 + u2 1 - v2 a 1 - 1{2 a) 
a(y, h) ay + (/1. + v) ah - yu2 + yv- av + --y;- au 

XW(x,y;v,w;h) 

=P(y; v, - u; h) + il p(y; v, w; h)W(x,y; w, - u; h)dw 

+ (1 W(x V'V -w'h)P(Y'-w _u-h)dw )0 ,." , , , , w 

+ [1 i1W(X,y;-V,-W;h)PCV;-W,W) 

( - h _dw XWx,y;w,u; )dw-. 
w 

As for the slab geometry, v * = v* = v and in the above 
equations the left- hand sides contain only the first and 
second terms, the other parts of each equation remain 
the same. As for the specular equation, it only contains 
the first term on the right- hand side and the left- hand 
side remains the same. 

Case 3. Time-invariant case 

In this case 

T(x, _v ; v, u; t, T) = T (x, y ; v, u, t - T) 

and 

W(x,y; v, - u; t, T) =W(x,y; v, - u; t- T). 
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The diffuse equations for the spherical and slab 
geometrices remain the same. However, all operations 
in the general form for the diffuse operator now can be 
expressed as the convolution operation * with respect to 
time. For example, 

2 ( a a a (y ) 1 + u2 1 - u2 a ) 
a(y,h) ay + /1. ah + -u- - yu 2 + --y;- au 

xT(x,y;v,w;h) 

= 1I p (Y;V,W;h)*T(X,y;V,W;h) 

+ il i 1W(X,y;V,W;h)*P(y,W,W;h) 

- dw_ 
* T(x, v;w, v;h)-dw . w 

+ [l p (y.v w'h)*P(x 1"11' v'h)dw )0 '" ,., " U' 

+ [1 il P(x,y; v, w; h) *P(y;w, w;h) 

- dw-* P(x, y; w, w; h)-;;; dw 

and 

2 ( a a 1 + u2 1 - v2 1 - u2 a ) 
a(y, h) ay + (/1. + v) ah - yu2 + Yv + --y;- au 

x W(x,y; v, w; h) 

=P(y; v, - u; h) + II P(y; v, w; h) *W(x,y; w, - u; h)dw 

(1 dw 
+ J

o 
W(x,y;v,-w;h)*P(y;-w,-u;h)-w 

[1 (1 _ _~ 
+ J

o 
J

o 
W(x,y;-v,- w;h)*W(x,y;w,u;h)dw-;;;, 

and likewise and true for the other equations. 
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Geometry of superspaces with Bose and Fermi coordinates 
and applications to graded Lie bundles and supergravity* 
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The geometry of superspaces with Bose- and Fermi-type coordinates is presented from a coordinate 
independent point of view. Various geometrical quantities of conventional manifolds are generalized so as 
to be applicable to superspaces. It is shown that these generalizations can be basically arrived at 
algebraically by replacing, in the definitions of various geometrical quantities, the Lie derivative of the 
conventional manifolds with a generalized graded Lie bracket. Explicit expressions for connection 
coefficients, Riemann curvature tensor, etc., are derived. The general formalism is then applied to graded 
Lie bundles the relevance of which to supergravity theories is demonstrated. 

I. INTRODUCTION 

The understanding of supersymmetries in four-dimen
sional space-timel

-
3 has been the subject of many re

cent papers. 4 Although the manner in which such sym
metries are to be made use of in particle physics is far 
from clear, a number of their mathematical properties 
have been elucidated. In particular, it has become clear 
that their group theoretic and algebraic properties fall 
within the domain of graded Lie groups and graded Lie 
algebras. 4-7 Several authors8- 14 have also discussed 
some of the geometrical properties of manifolds involv
ing both Fermi and Bose coordinates. For example, 
expressions in a coordinate induced basis for connection 
coefficients and contracted curvature tensor of a super
space are given by Nath and Arnowitt. 9 

The main purpose of this paper is to give a general 
coordinate independent discussion 0 f the geometry of 
manifolds involving both Fermi-type and Bose-type co
ordinates. 15 We refer to such manifolds as superspaces 
and extend various notions of modern differential geom
etry so that they will be applicable to them. Among 
these notions are the metric, connection, curvature, 
wedge product, exterior derivatives, etc. An important 
step in generalizing these concepts turns out to be the 
generalization of the Lie derivative, or the commutator, 
to a more general Lie bracket implicit in graded Lie 
algebras. 

The geometry of the superspaces is presented in Sec. 
II. Starting from general definitions, we derive expres
sions for various geometrical quantities of the super
space and often illustrate them with simple examples. 
Although it is not the purpose of this paper to give de
tailed field theoretic applications of such geometries, a 
simple example is given in Sec. III of how one constructs 
a fiber bundle with four-dimensional space-time as its 
base manifold but with a graded Lie group as its struc
tural group. It is shown that it is possible to construct 
a locally supersymmetric Lagrangian from the gauge 
potentials (the connection coeffiCients) associated with 
the graded Lie bundle. It leads to a supergravity theory 
involving spin 2 and 3/2 fields, which was obtained by 
Freedman, van Nieuvenhuizen, and Ferraral6 and then 
in its first order form by Deser and Zumino. 11 In fact, 
the Lagrangian we obtain is identical with that of Deser 
and Zumino. Locally supersymmetric theories arising 

more conSistently from graded Lie bundle geometries 
will be discussed elsewhere. 18 

II. GEOMETRY OF SUPERSPACES WITH BOSE AND 
FERMI COORDINATES 

Unless a change or generalization is necessary, 
we follow the notation and conventions of Refs. 12 and 
19, except that boldface characters are used in place of 
characters with overarrows. To aid the reader who is 
familiar with conventional concepts of differential geom
etry, each concept is first written down for Bose-type 
manifolds, and then its generalization to Bose-Fermi
type superspaces are given. As far as we know, many 
of these generalizations are new even in mathematical 
literature. 

(i) Vector fields, bases, and 1-forms: We begin by 
noting that in modern differential geometry the basis 
vectors are taken to be identical with directional deriva
tives. For example, let, in some neighborhood, X", 
11 = 1, ... , n, be quantities whose values X" (P) are the 
coordinates of the poin t P. The operator Cl" defined by 

Cl J = a~"f(XI, ... , X") 

is the vector tangent to the lines Xk =const (k* 11). The 
n operators 

where 11 indicates which vector fields, and not which 
components, are the prototypes of basis vectors. Since 
they are partial derivatives of coordinates, such a basis 
is called coordinate induced. The general feature of a 
coord inate induced basis {elL} is that 

[elL, evl = 0 (coordinate basis). 

More generally, however, this commutator is not zero: 

[e", evJ =C~ve~ (general basis), 

where the C~v are the commutation coefficients of the 
basis {e,,}. 

These ideas readily generalize to superspace. Let 

yi={x",8"'}, 1l=1, ... ,n, a=l, ... ,m, (2.1) 

determine, in some neighborhood, the coordinates of a 
point P in a superspace with n Bose-type and m Fermi
type coordinates. Then we define a basis 
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(2.2) 

where 

(2.3) 

Since the order of various terms now does matter, in 
this paper by OJ we always mean differentiation from the 
left. We also define the generalized Lie brackets 

[} 
aja· 

ej, ej = ejej - (-) J eJej , 

{ 

0 if ej is a Bose-type operator 
C1 j = 

1 if ei is a Fermi-type operator. 

(2.4) 

Then the basis vectors (2.2) are the simplest prototypes 
of those satisfying the generalized commutation relations 

[ej, ej}=Ctjek' (2.5) 

It is clear from (2.4) that except when both ej and eJ 
are of Fermi-type (2.4) is just the commutator [ej,ej); 
when ej and ej are both Fermi-type, (2.4) becomes an 
anticommutator. Therefore, the generalized commuta
tion coefficients C7j in (2.5) are, respectively, anti
symmetric and symmetric in i and j. 

The I-forms {w"} are defined to be the duals to the 
elements of the basis {ev}: 

(w" , ev) = o~ . 
The simplest prototypes of I-forms are the coordinate 
differentials {dX"}. The I-forms in superspace are de
fined similarly: 

(2.6) 

Given a set of basis vectors {ej}, one can expand an 
arbitrary vector in the form 

(2.7) 

where the Uj are the expansion coefficients (contra
variant components) of U. The Bose or Fermi nature of 
the expansion coefficients depends on whether U is Bose 
or Fermi type. Since again the order of various terms 
is important, we use the convention that expansion co
efficients appear to the left of basis vectors. 

Similarly one can expand an arbitrary I-form in 
terms of basis I-forms: 

the Bose or Fermi nature of Vi depending on V. 

(2.8) 

(ii) The 1I1etric: In the mathematical literature, the 
metric is defined as a bilinear nonsingular operator 
which acts on pairs of vectors to produce c-numbers, 
the components of the metric tensor: 

g=g"vw"0 WV 

where, by de/initon, 

g"v=gv" =e,,· ev=g(e", ev), 

e" = basis vectors, 

WV = corresponding I-forms. 

It is well known j2, 20 that this definition is equivalent to 
the one used commonly in physics. Taking our clue from 
these expressions, we take for the metric operator of 
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the superspace 

g=gjJw i 0 w j (2.9) 

where now 
~iQj ( gjj=(-) gji=ei·ej' 2.10) 

It is, of course, possible to further generalize (2.9) 
such that gij would not satisfy (2.10). But much of the 
elegance of the geometry described in this paper depends 
on (2.10). Moreover, there is no loss of generality 
since the anti symmetric properties (or symmetric for 
Fermi coordinates) of bases are absorbed into the gen
eralized bracket (2.5). In the special case where Wi are 
duals of coordinate bases, i. e., when 

wi=dYi 

then one gets the familiar line element 

(~)2 =gjjdyi dyJ. 

The contravariant components of g are defined such that 

(2.11) 

(iii) The directional covariant derivative operator Vv : 
The important defining properties of this operator are 
that (a) acting on a tensor field it produces a tensor of 
the same rank, (b) it is linear in U, 

V<!jVj+!2V2 =/1 VVI + f2 VU2 ' (2.12) 

and (c) it acts as a derivative operator on functions and 
tensors 

V v/ =Uj, 

Vu(S <SIT) =Vu(5)0 T +50 Vu (T). 

(2.13) 

(2.14) 

In a similar fashion we require that the directional co
variant derivatives in superspace have the properties 
(2.12) and (2.13), but replace (2.14) by 

(2.15) 

(iv) Generalized Lie derivatil'es and torsion: As we 
shall see below, to explicitly calculate the connec tion 
coefficients, we need the concept of a "generalized Lie 
derivative." Conventionally, the Lie derivative Lu(V) is 
defined as the commutator 

Lu(V)=[U, V). (2.16) 

As a most natural generalization of this we take 

L u(V) - IiJv(V) = [U, V}, (2.17) 

where the generalized bracket is given by (2.4). For 
example, with respect to basis vectors {e i } 

liJei (e j ) = [ei , ej } 

a·a· 
= eiej - (-) • J ejej . (2.18) 

For conventional manifolds a torsion tensor is defined 
as 

(2.19) 

Then the vanishing of this tensor, or its coefficients in 
a coordinate basis is the mark of a torsion-free 
manifold: 

Vv(V) - VV (U) = Lu(V) =[U, V) (torsion-free manifolds). 

(2.20) 
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Analogously, we introduce a tensor field F(U, V) in 
superspace as follows: 

(2.21) 

Clearly, the nonvanishing of this tensor indicates the 
presence of torsion. The converse is not true, however. 
That is, the vanishing of F(U, V) allows for a particular 
type of torsion which arises as a result of the noncom
mutativity of the Fermi-type coordinates. 

Just as torSion-free manifolds for which T(U, V) 
vanishes are an important subclass of general Bose
type manifolds, consider the subclass of superspaces 
for which the tensor FtU, V) vanishes. Then we have 

(2.22) 

In this case, as in the case of torsion-free manifolds, 
the connection coefficients can be determined uniquely. 
In more general cases when (2.22) is not satisfied to 
determine the geometry completely, one must also 
specify the torsion coefficients Ff~ or supply an equiva
lent set of information. 

(v) Connection coefficients: Since V' e. carries a tensor 
field it acts on into a tensor field of the same rank, then 
the quantity V'. (ei ) is expandable in terms of the basiS 
set {e;}: j 

(2. 23) 

The quantities rJj are called the connection coefficients. 
They are formally obtained from the expression 

(2.24) 

These are immediately applicable to superspace without 
any modification. 

To uniquely determine the connection coefficients 
when (2.22) is applicable, we need one more require
ment, that of the vanishing of the directional covariant 
derivative of metric tensor: 

(2.25 ) 

For Bose-type manifolds, this is, of course, the usual 
requirement. Applying the operator V'k~V'.k to g, we get 

V' .(!iiiWi ®w i
) 

=[!iU,k- (_)("'i+"'i )"'k(rkji + (-)"'j"'ir. iI )] wi®w j
• 

Then (2.25) leads to 

!iij, k = (- )("'j+"'j)"'k[r kli + (- )"'i "'ir hii]' 

Next we note from (2.22) and (2.23) that 

r}k- (_)"'kaj r~=- C}~. 

(2.26) 

(2.27) 

(2.28) 

Solving these two equations for the connection coeffi
cients, we get 

(2.29) 

where 

r kli = ~ (- )("'/+"j)"'k[ (gU,k + Clj,k) + (- )"i<>j+"i<>k+"i"k 
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For manifolds with torsion one must use instead of 
(2.22), the general expression (2.21). Then instead of 
(2.28) one gets 

(2. 28a) 

where FIll are torsion coefficients. Then, instead of 
(2.30) one obtains 

r;, =gJlr Illi = kJ/[rm - FIJI, 

- (_ )"'OtJ+"i"'~+"J"~ F
hJI 

- (_ ) "'Il "J F
illJ

], (2.30a) 

where the coefficients r IliJ are given by (2.28). 

It is to be emphasized that the order of the indices in 
raising and lowering various tensor coefficients asso
ciated with superspace are important and must be ad
hered to in our convention. 

(vi) Wedge products and exterior derivatives: To dis
cuss other geometrical quantities such as curvature 2-
forms, we must have the analogs of wedge products in 
superspaces. The ordinary wedge product of two 1-
forms is defined to be 

(2.32) 

i. e., the antisymmetric part of wj
@ Wk. A useful quan

tity in superspace which reduces to the above definition 
is the generalized wedge product 

(2.33) 

when one or both of Wi are Bose type this reduces to 
(2.32). But when both Wi and Wi are of Fermi type, we 
get 

w'" V w6 =~(w'" IZiwa + wa,g w"'), (2.34) 

i. e., the symmetric part of w"'®wa. 

Exterior derivative or the curl operator is the gen
eralization of the familiar concept of the differential of 
a function, e. g., df. Given a basis {ei } and the corre
sponding 1-forms {Wi}, the action of the operator d on a 
function is defined to be 

df=ei/w i
• (2.35) 

In a coordinate basis this is just 

df=oddX i
• (2.36) 

More generally, d is an operator which (a) acting on an 
n-form gives an (n + l)-form, (b) ddw = 0 for any w, and 

(2.37) 

if Wi is an n-form. 

From (2.36) it is easy to see why dd = 0 on a function 
f, 

ddf = a" aJdX" IIdXv
, 

a "a" is symmetric while dX" II dX" is anitsymmetric. 

We define the d operator in superspace with essen
tially the same properties as it ac ts on generalized 
wedge products: 

(a) d acting on n-forms gives (n + 1) forms, 

(b) ddw = 0 for any w, 

(c) Given one forms wi and w2
, 
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(2.38) 

In particular dd in a coordinate basis acting on functions 
in superspace gives 

ddf =oJoddyJ OdYl 

= 0iJ.0v/dX'" I\dXv + 0aosfdeav deB =0. 

The action of d on higher forms can be worked out by 
induction. 

(vii) Curvature operator and the curvature tensor of 
the superspace: The curvature operator R is a mixed 
tensor of rank (1, 1). Acting on a pair of vector fields 
U, V, it gives another vector field: 

R(U, V)=VuVv - VvVu - Vru,VJ 

=[Vu, Vv]- Vru,VJ' (2.39) 

This is then used to define the Riemann curvature 
tensor with three covariant ranks and one contravariant 
rank. That is, given R(U, V), another vector W, and a 
I-form w we have for the Riemann curvature tensor 

f<.(w;W, U, V)=wR(U, V)(W). (2.40) 

From (2.39) it is clear that R(U, V) acting on Wpro
duces another vector field. So, given a basis {eiJ.}, one 
has 

(2.41) 

The coefficients on the rhs are the components of the 
Riemann curvature tensor. The generalization of these 
concepts to superspace again involves the replacement 
of the commutators with the generalized brackets (2.4). 
Thus the curvature operator of the superspace has the 
form 

R(U, V)=VuVv - (_)auayvvvu_ Vru•v1 

=[Vu, V v}- Vru,VI' (2.42) 

Using this, the curvature tensor of the superspace is 
defined as in (2.40), and the components of the curvature 
tensor in a basis {el} are given by 

(2.43) 

From these one can then proceed to derive Cartan's 
equations for the superspace. 

(viii) Components of the curvature tensor of super
space: As is clear from (2.41) for bosonic mumfolds the 
components of the Riemann curvature tensor are given 
in the basis {eiJ.}: 

R~p~ = (wiJ. ,R (ep, e~) ev) 

= (wiJ., ([Vp, v~J - Vr'p,.~)eV> 

= r~~,p - r~,p~ + re~r~p - repr~~ - c:~r~ , 

where {wiJ.} are the I-forms dual to the bases {eJ. Ac
cordingly we write for the components of the curvature 
tensor of the superspace 

R;kl = <Wi, «(Vk' V,} - Vr1k,.,J) e) 

= <Wi, R (ek, e,)ej) (2.44) 
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From this we get from the Ricci tensor of superspace 

R =Ri _ri ()"'I"'lrl ()"'I"'m+"I"J+ClI"'lrmI· i 
JI- jll- J/,l- - jl,,+ - JI ml 

( )"'I""·"'m""rm rl Cm rl 
- - Jl m' - /I Jm' (2.46) 

Finally, the scalar curvature of the superspace is given 
by 

(2.47) 

III. A GRADED LIE BUNDLE AND SUPERGRAVITY 
THEORY 

As a simple application of the superspace geometries 
developed in the previous section, we consider a simple 
graded Lie bundle, i. e., one which has the space-time 
as base manifold and a graded Lie group as structural 
group. The geometrical invariants of such a fiber bundle 
do not as a rule lead to locally supersymmetric scalars. 
The reason is that in such a scheme the covariance is 
defined only with respect to space-time coordinate 
transformations. But it is shown that by using a partic
ular combination of available gauge potentials it is pos
sible to construct a locally supersymmetric scalar which 
is identical with the Deser-Zumino Lagrangian. 
In this case, as well as the Deser-Zumino case, it is 
not clear why one should pick such a combination of the 
gauge fields involved. A logically more consistent ap
proach to locally supersymmetric theories will be given 
elsewhere. 18 

The main strategy for the computation of various 
geometrical quantities will be the same as that described 
in Refs. 12 and 19. But now we will use the appropriate 
formulas derived in the previous section for a superspace. 

The basis; We begin by writing down the algebra of the 
graded Lie group which we want to use as a fiber. It is 
the 14-parameter group with generators 

( 3.1) 

where P A are the generators of translations, JAB those 
of homogeneous Lorentz transformations, and SOl are the 
supersymmetry generators. Since this algebra has a 
Poincare subalgebra, most of the necessary computa
tions have already been carried out in Ref. 19. There
fore, whenever no confusion can arise we only give the 
additional parts which involve the supersymmetry 
generators SOl' 

The fiber bundle of interest to us is an 18-dimensional 
manifold, and to describe it we need to specify a set of 
18 basis vectors in the tangent space to a point of the 
bundle. We take the basis in the vertical sector of the 
tangent space to be isomorphic to the algebra (3.1). For 
the horizontal tangent space we can take either the co
ordinate basis 

(3.2) 

or the gauge covariant basis 

EjL=hjL +N~ hA +N~BhAB+N~h",. (3.3) 

To specify a basis completely, we must specify the gen
eralized commutators of its elements. Thus in the 
gauge covariant basis 

{EjL, E A , EAB , E,,} (3.4) 
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we have 

[E", Evl = - F~vEA - F~~ EAB - F~vEa, 

o =[E", EA] =[E", EAB ] =[ E", Eal =[E A, EBl =(EA, Eal, 
(3.5) 

[E A, EBB·l =f1 BB' Ee, [Ea , EABl =f: ABE B, 

[E AA.,EBB·l=f11: BB·E w , 

{E a , Ea} =fta EA' 

In the direct product basis we take the set 

{h", hA' hAB' h a}, 

where 

[h", ~]=[h", hAl = [h", hABl=[h", hal=o 

(3.6) 

(3.7) 

and the algebra of the bases in vertical tangent space is 
the same as that in (3.6). As demonstrated in Refs. 12 
and 19, the connection coefficients N~, N~B, and N~ in 
(3.3) are the "gauge potentials" of the generators speci
fied by their upper index. Similarly, the quantities F~v, 
F:~, F~" are the corresponding field tensors. Since E" 
is a Bose-type operator, it is clear from (3,3) and (3,5) 
that N~ and F~v are anticommuting objects. 

The metric: The computations are most easily carried 
out in the gauge covariant basis. So we shall specify the 
components of the metric tensor in this basis in which, 
by definition, the metric tensor is block diagonal. So we 
have for the metric tensor components 

where 

, , 
1----1---

I I T)AB ' 
I ' 

,- _ __ 1_ - - ...J - - -

I I T)aa 
I I 

T)AB=EA·E.e=T)BA=E§· E A, 

T)AB=EA·EB=T)BA=E B• E A, 

T)aa = Ea • Ea = - T)aa = - Ell' Ea , 

(3.8) 

(3.9) 

and index ..4=AA I, g "V is the metric tensor of the base 
manifold, and T)AB and T)AB are Euclidean metrics. 

Motion along fiber: By using the Jacobi identities as 
well as other commutators, equations of variation of 
various quantities such F:", N~, etc., along the fiber 
can be derived. Many of these which are due to the 
Poincare subgroup have been given in ReL 20. We 
therefore record here those which are new or which are 
modified: 
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aBF~v=- fZIlFtv, 

a AF~v = a",F~v = 0, 

aaF!v=f:aF~v, 

oa F~v = - f~BF~v, 

aBN~=-f1IlN~, 

aAN~ = aaN~ =0, 
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(3.10) 

BaN! =f",BIlN~, 

aaN~=-f:iN:. (3.11) 

Relation between field tensors and potentials: These 
are derived12

•
19 by considering the relation between the 

basis (3.4) and (3.7). One gets 

A A A fA 'IBNc (3 12) F"v=NjJ.,v-Nv,,,+ Be"'" v, • 

F:v=N:,v-N~jJ. +f£c (N~N;- N; N!) - ftIlN~~, 
(3.13) 

(3.14) 

The invariance, or the lack thereof, of various geomet
rical invariants under local supersymmetry transforma
tions can be surmised at this stage. The quantity N: 
appearing in the three F "v's above is related via our 
parallel transport requirement to the connection coeffi
cients in the base manifold, Covariance with respect to 
such a connection is the covariance with respect to 
general space-time coordinate transformations with or 
without and a priori does not involve local supersym
metry, The proper way of ensuring local supersym
metry is to ensure covariance with respect to a suitable 
connection in the base manifold. 

Let us ignore for the moment the logical basis of 
writing down locally supersymmetric scalar densities. 
Given F~v and Nt, we can construct the contracted object 

EAP"v ftIlN~F~v/ det(N!). 

Also given F:~ and N:, we can construct the contracted 
object 

N':tN"eF:~ . 

Clearly, the sum of these two expressions multiplied by 
det(N~) is just the first order Lagrangian density. 17 What 
is lacking is a logical basis for making this choice. 

The connection coefficients: We now specialize the 
problem to torsion-free manifolds. These coefficients 
can be directly calculated from (2.29) in the gauge co
variant basis. The ones which are nonzero are listed 
below. With a=A, ..4, or (1, we have 

qe=- ~f~e' 

r~a = r~" = - ·1 ttvl1abF~p, 
r~v=- r~,,=~F~v, 

(3.15) 

r~v =: { ~v}base, 

where {~v}base are the connec tion coefficients of the base 
manifold. In a coordinate basis they reduce to the 
Christoffel symbols. 

Scalar curvature of the bundle: It is now straightfor
ward to compute various geometrical covariants and in
variants of the bundle. Here we just write down the ex
pression for the scalar curvature of the bundle: 

R =RG +Rba.s. - }gIJ.PgV~T)ABF:AF~p 

1 IJ.P VA - -FA FBl IJ.p vAT) F'" Fil -4g g l1AB IJ.A vp-4g g all "A VP' (3.16) 

where 

RG = scalar curvature of the group manifold, 

Rba.s.= scalar curvature of the base manifold. 

Freydoon Mansouri 56 



                                                                                                                                    

Now we require that the homogeneous part of the con
nection in the fiber bundle be related to the connection 
in base manifold by the principle of parallel 
transport, 19 

(3. 17) 

and that 

g .. v=T)AaN:N~. (3.18) 

Then Vu(N:) =0 would give F:v = 0 so that the contribu
tion of translation field tensors to R vanishes. By (3.17) 
the F!v are then expressed in terms of g .. v and the con
nection coefficients of the base manifold. The last term 
in (3.16) is the contribution of the "graded" part of the 
structural group. Since supersymmetry transformations 
are not incorporated in the base manifold, the graded 
part acts more or less like an internal symmetry group, 
a feature which is not desirable. The proper way of in
corporating the graded part is discussed elsewhere. 18 

IV. FINAL REMARKS 

We have given a self-contained discussion of the 
geometry of superspaces from a fairly general point of 
view and have derived explicit formulas for the compu
tation of various geometrical covariants and invariants. 
The general formalism is then illustrated by studying the 
geometry of a simple graded Lie bundle and by writing 
down locally supersymmetric Lagrangian densities. It is 
hoped that this work will help resolve the mathematical 
problems involved in dealing with supersymmetries. 

The primary aim of this paper has been to clarify 
questions which will pave the way for useful physical 
interpretations of supersymmetries in particle physics. 
But the generalized concepts, several of which are new, 
are also of intrinsic mathematical interest. It is quite 
remarkable that a simple extension of commutator to a 
more general Lie bracket plays such a crucial role in 
shaping aU the geometrical characteristics of super
space. Aside from mere elegance and generality, the 
coordinate independent approach adopted in this work 
was strongly motivated by the desire to display how the 
passage from conventional to superspace geometries 
could be envisaged algebraically. Once this algebraic 
approach to arriving at new geometries is recognized, 
one can imagine the possibility of constructing other 
sophisticated geometries based on more complicated 
algebras, In particular, we conjecture that this point of 
view will prove useful in the study of geometries re
lated to nonassociative algebras, 
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Asymptotic twistor space T is a 4-complex-dimensional Kahler manifold (of signature + + - -) which 
can be constructed from an asymptotically flat space-time containing gravitational radiation. The 
properties of this Kahler structure are investigated, the Kahler metric being of a particular type, arising 
from a scalar L with special homogeneity properties. The components of the Kahler curvature K ":8 are 
found explicitly in terms of the asymptotic Weyl curvature of the space-time. When gravitational radiation 
is present, K ":8 *0, whereas for a stationary field K ":8 = 0. The "Ricci-flat" condition K a!> = ° is found 
always to hold. 

INTRODUCTION 

The theory of twistors provides a novel approach to 
the treatment of special- relativistic physics which is 
particular ly well suited to the description of massless 
fields (of any spin) and other conformally invariant as
pects of physics. 1,2 The theory can also be used to treat 
situations in which conformal invariance does not hold 
and when the space-time is not flat but, as yet, little 
work has been published on this. In the present paper 
we examine the curved twistor space T which arises 
naturally from an asymptotically flat space-timelh in 
which gravitational radiation may be present. It is the 
presence of this radiation which modifies the structure 
of the twistor space from the standard one arising in 
the case of flat Minkowski space iI-I. This standard twist
or space T is a complex four-dimensional vector space, 
on which is defined a Hermitian form 2; of signature 
(++- -). [This structure for T is invariant under the 
fifteen parameter conformal group C! (1,3) for M, in 
accordance with the local isomorphism SU(2, 2) 
- C: (1, 3). ] But when (outgoing) radiation is present the 
vector space structure of the twistor space is lost. How
ever, T remains a complex manifold; furthermore it 
retains a real scalar field z: defined analogously to the 
standard z.; for T, but which cannot now be regarded as 
a Hermitian form owing to the lack of linear structure 
for T. 1 The second derivatives of L (once holomorphic 
and once antiholomorphic) with respect to the coordi
nates in T define the components of a Kahler metric on 
T lof Signature (++- -) \. The curvature I<':~ of this 
Kahler metric had been computed ear lier. using a com
bination of algebraic and geometric arguments, the re
sult being given in barest outline in Ref. 1. It turns out 
that only five of the 100 independent curvature compo
nents survive, that K~: is Ricci-flat (L e., K~r= 0), and 
that these surviving components can all be expressed 
explicitly in terms of standard asymptotic curvature 
quantities for the space-timelYI which describe the ra
diation behavior of the gravitational field. These earlier 
arguments, somewhat involved conceptually and diffi
cult to express explicitly, have not been described in 
print. Here we present a much more direct approach to 
the problem, which shows how these curvature compo
nents may be obtained by a straightforward computation. 

The discussion given here, as regards twistor theory, 
will be essentially self-contained. Some familiarity with 
the standard notation for asymptotically flat space
times will be assumed. 

1. KAHLER MANIFOLDS 

The definition of a Kahler manifold K can be given in 
various different equivalent forms. 3-5 For our present 
purposes, K is a complex n-dimensional manifold6 on 
which is defined a nondegenerate Hermitian metric G, 
obtainable (locally) as a second derivative (once holo
morphic and once antiholomorphic) of a real scalar field 
L. Thus, if z« (a=1, ... ,n) are local holomorphic co
ordinates for K, with complex conjugates za' 
(0' = 1 J , ••• , n'), then the components of .2 in this co
ordinate system constitute the nonsingular Hermitian 
matrix7 

i)22; 

ii.,,'" aiS' (1. 1) 

Any vector field y (real or complex) can be expressed 
in these coordinates as 

;CO J "",,' (i 
1'= l ;:)Ci + vv ;)_,," 
- (.Z (.Z 

The vector field is vcal if 

W". = va' (= vaJ. 

(1. 2) 

0.3) 

It is called holomorphic if W'" = 0 and Va are holol11or
phic functions of Z6 (i. e.. il V" / Oz,B' = 0); it is called 1I1/1i

lzololJ/orplzic if V'" = 0 and W"· are holomorphic in z8' 

(so the complex conjugate of a holomorphic vector field 
is antiholomorphic). A scalar field d) is holomorphic if 
simply i1¢, ()z,'" = ° and antiholomorphic if (let!; (lz," = O. 

For many purposes it is convenient to use a single 
index for the entire set of coordinates 2

1 
•••• , z,", ZI' 

zn' and write 

vI' = (V", HI"') (r=l, ... ,H,l', .... 11'). (1. 4) 
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Then the components 

GrA = fo G,,).l (1. 5) 

~17' 0 J 
define a (real) Riemannian metric on K. This metric is 
real because 

(1. 6) 

is real whenever .E is real. A Riemann curvature tensor 
!:! is thereby defined, with components Rr .u:e, the only 
nonvanishing members turning out to be those of the 
form 

(1. 7) 

The Kahler metric components GaB" together with 
their inverse matrix GaB' for which 

(1. 8) 

can be used to eliminate all primed indices from a ten
sor expression by pushing them all into the opposite po
Sition, e. g., 

(1. 9) 

The surviving Riemann tensor components (1. 7) can then 
be expressed in terms of the quantity K"~ 

(1. 10) 

It turns out (as we shall see shortly) that K:e enjoys a 
symmetry and a Hermiticity property: 

(1. 11) 

Calculations can be made independent of coordinates 
by the introduction of an abstract index formulation. In
dices a, {3, ••• , W, a o, ... , a1> .,. are used here abstract
ly (so va is a vector, namely the vector with compo
nents Va_ the "primed" components being taken as 
zero). The corresponding conjugate abstract indices 
a', {3', '" are not needed since we can write W", for the 
vector with components WI'Gall,. Thus, instead of giving 
rise to primed abstract indices, compex conjugation en
tails the interchange of all upper and lower indices, 
e.g., 

(1. 12) 

wh~h exp.!esses the fact that ~ = yc.'B'", corresponds 
to T'd" = T"·/$·".Ga .... GBIl' G"r. The abstract version of the 
Kahler metric tensor is, with this notation, simply the 
Kronecker tensor o~, as follows from (1. 8). The Kahler 
Hermitian scalar product between vectors rr, va is 
thus 

(1. 13) 

The notation is thereby brought into line with that of 
standard twistor theory. 1,2 

The information concerning the curvature, etc., of 
the Kahler structure goes into the formal properties of 
covariant derivative. In components we have 

(1. 14) 
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where the r:. are the ordinary Christoffel symbols for 
the metric (1. 5). From (1.1) and (1. 5) one obtains 

r:., = r:,. = r:~ = r:,., = r::. = rf., = 0 

so that 

.'//;f> _ ar' Gf>" 
v -az il ' , 

(1. 15) 

(1. 16) 

The four expreSSions (1. 16) are the component forms of 
the respective abstract expressions9 

(1. 17) 

The two derivative operators 0q" oq, extend so as to ap
ply to any tensor quantity ~.::!;. in the usual way, so that 
the normal additivity and Leibniz properties hold. The 
relation to the curvature K'{~ is achieved via 

{O).O'" - O"'o).)v' =K"~V"', 

{O).o." - O",O).)W/$ =~:aw", 

as follows from (1. 10) and the relation 

ve;.;.- ve;.;.=Rez •• VS. 

Alternatively, the coordinate expressions 

KIIB'~' = - G).", ,a,B' +G/KI·G'''',/$,G>.a',II, 

K aB ,)." = - r:>.,B' 
may be employed. 

We have the vanishing torsion properties 

o",oBf= DIIOaf 

and 

(1. 18) 

(1. 19) 

(1. 20) 

(1. 21) 

(1. 22) 

O[aOB]f=O, o[ad1'=O (1. 23) 

for any scalar f. In fact, relations (1. 23) generalize to 
the commutation properties 

(1. 24) 

applied to any tensor quantity. Equation (1. 24) follows 
because (1. 7) are the only surviving Riemann tensor 
components. But a simple "abstract" proof of these facts 
can also be given. Choose f to be an arbitrary holomor
phic scalar on K. Then oaf::= 0 (since the component ver
sion of oaf is GaB'aj/azB'), whereas Oaf is arbitrary at 
anyone pOint. Since the torsion vanishes, we would have 
a curvature quantity Q~~ for which 

{oaOB _ oBOa)O).f=Q~/$YOYf. (1. 25) 

But 

oa. oBo).f = oa q oIIf::= 0, 

and Similarly if a and {3 are interchanged. Thus (1. 25) 
vanishes, and so Q~~ = 0 because of the arbitrariness at 
each point of Oyj. The second of relations (1. 24) fol
lows-and the proof of the first is similar. 
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The symmetry properties of K'i.~ also follow directly 
from the formal properties of u'" and 0"'. The 
"Hermiticity" 

(1. 26) 

[ef. (1. l1)J is a direct consequence of (1.18) and the 
fact that c'" and ':J'" are complex conjugates of one an
other. (In components, 0" = Gaa • u6 .) The symmetry of 
1¢,~ in a, {3 follows because 

K~~~,J=(J:::J", - C",U\)Uaf 

= IJLJ", UBf - ~'" cs:1f, 

each term of which is symmetric in 0' and {3, by (1. 24) 
(whether or not f is chosen holomorphic). The symmetry 
in A, !l follows similarly, so that 

(1. 27) 

The "Bianchi identities" are correspondingly derived: 

-"['" (K~J:W,,) = u['" (lh~JSJ - UsJUA)Wr 

= [jA!:J[", CSl Wr - K~~s{j" Wr - K;t'",USl W" - 0 

gives, on expanding the left-hand side and using (1. 24), 
(1. 27), 

and, similarly 

L[AI~l~ = O. 

(1. 28) 

(1. 29) 

Note that by (1. 27) we can re-express these relations 
as 

2. KAHLER MANIFOLDS WITH HOMOGENEOUS 
SCALAR 

(1. 30) 

All the above properties hold in a general Kahler 
manifold. The scalar ~ need not be globally defined and 
is not, itself, considered to be part of the Kahler struc
ture of /\. However, in the situation that concerns us 
here, L has f[eometric mcaninf[. Furthermore, it has 
a certain homogeneity property which can be described 
as follows: There exist coordinates z"', 2"" (possibly de
fined only locally) for which 

(2.1) 

is separately homogeneous of degree unity in z'" and in 
-a' . 
Z , 1. e., 

L(AZ"', AZ" ') = A~L(z", z'" '). (2.2) 

Euler's theorem gives 
at ')' ,-",, , 

Z L..J ,a ::::: L = z L.; tot' (2.3) 

and, by taking one more derivative ref. (1. 1) 1, 

(2.4) 

We introduce vectors Z'" and Z"" whose components are 
z'" and ZB' G"a" respectively, whence by (2.4) we have 

(2.5) 

Equation (2.3) gives 

(2.6) 
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A tensor ~ .:::,. will be called homogeneous of degree 
(p, q) if its components satisfy 

~':';1'(Az6, AZ9') = >J'~. ~':';T(z9, z6'). (2.7) 

By referring to (1. 16) and using the facts 

z 4I r!4I = (G/I)('L,.,x') ,4Iz4I = 0, 
(2.8) 

G
4I
·' ,xzx = 0 

(which follow, again, from Euler's theorem) we have 
the" covariant" version of Euler's theorem 

(2.9) 

expressing the homogeneity (2.7). Since, by (2.5), Z'" 
and Za are defined explicitly from L, Ua, and 0"', we 
see that (2. 9) expresses the homogeneity (2. 7) in a co
ordinate independent fashion. One readily obtains the 
homogeneity degrees 

L: (1,1), Za: (1,0), Z",: (0,1), 
(2.10) 

:~;",: (- 1,0), C": (0, - 1), 1<';:: (- 1, - 1), 

where the homogeneity of the operators cJ"" U'" is to be 
interpreted as the fact that when acting on a tensor of 
homogeneity degrees (p, q), !:=", produces one of degrees 
(p - 1, q) and ~ '" produces one of degrees (p, q - 1). 

Since Za;8 = Z" ,8 = 6~ [by (L 16) and (2.8) 1 and Z" ;8' 

= z'" ,8' = 0 (together with their conjugates), we have 

(2.11) 

and 

(2,12) 

Equations (2.11), (2.12) tell us that (Z"', Z,.l behaves 
like a "position vector" for the space /\. Indeed, writing 
z9 = (26, i 6

'), we can re-express (2.11), (2.12) as 

(2.13) 

the semicolon now denoting the full operation (1. 14). 

This analogy with the concept of position vector is 
brought out more strongly if we adopt a somewhat dif
ferent attitude to the space /\ which is useful in some 
contexts. According to this alternative view we allow 
the coordinates 2'" and 'la' to vary independently of one 
another-so instead of using the notation z",' for the sec
ond set of coordinates, we introduce new independent 
quantities1 

Q 'f,a', where If''''' ranges over some suitably 
small neighborhood of z"", for each 2"'. The manifold 
now becomes 2n-complex-dimensional (i. e., 4n-real
dimensional) with local holomorphic coordinates z", 1/'" 
We denote this new space by C/\; it is a complexifica
tion (" second complexification"!) of K considered as a 
rral 211-dimensional manifold. The "real slice" /\ of 
C/\ is given when /I,'" = z"". We suppose that L is real
analytic on K, i. e., analytic in the real and imaginary 
parts of z a so that its definition extends holo I/lorphicall" 
(i. e., complex-analytically) toCK, which is assumed to 
be a sufficiently small complex extension of I< that this 
is uniquely possible. Thus, 

(2.14) 
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FIG.!. 

is a holomorphic function (for each coordinate chart) of 
2n complex variables. 

The Kahler metric and the covariant derivative opera
tors [j"" [j'" also extend uniquely to C I< with the same 
formal properties as before, but now we write W'" in
stead of Z",: 

Z'" = LJ"'~, W'" = [j",~, Z"'W", =~, 

D",Zs = a! = oSW"" G'" ZS =0, 0", Ws =0. 

We may think of 

(2.15) 

(2.16) 

Z'" ffi W'" (2. 17) 

as denoting the "position vector" of a point of CI<. As 
we hold W'" fixed and vary Z"', we obtain a space which 
has a well-defined structure as a vector-spaceL'(W",L 
The existence of this vector space structure follows be
cause the operators =:J", commute with each other (1. 24) 
and satisfy the first relation (2. 16). The vector Z'" is 
now legitimately a position vector (in the normal sense) 
for the space 2(w,,) for each given W". Similarly, as we 
hold Z'" fixed and vary W"', we obtain a vector space 
W (Z"') for which W'" is a normal position vector and [j'" 

the corresponding gradient operator (see Fig. 1). The 
space CI< itself does not, however, have a vector space 
structure, in general. Although (2.17) behaves formally 
like a position vector, with respect to the operator 

[cf. (2.13)], the operators (2.18) do not commute with 
one another, the commutation giving rise to the curva
ture K::. Thus, K:: expresses the way in which the flat 
structure of each.2 (W",) gets "twisted around" in rela
tion to its neighbors, i. e., as W'" varies, and the way 
in which the flat structure of each W (Z"') gets "twisted 
around" as Z'" varies. 

As a final remark in this section, we note 

(l=pL.::'" - :J" r:p)ZS = 0 _ [j'" 6~ = 0 

so that 

Kp"'uIlZa =0 

and similarly 

Kp"'usWa=O, 
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which takes the form 

3. ASYMPTOTIC TWISTOR SPACE 

We now specialize the preceding theory to the case of 
the space T of asymptotic twistors. This space has been 
introduced and briefly discussed in Refs. 1 and 2. Here 
we give an independent derivation of the properties of T. 

Let /11 be an asymptotically flat space-time, with 
future l1 null conformal infinity!)+, Suppose that/l1 and its 
metric gab are such that a conformally related metric 
gab = n2gab exists for In (=/11 U !)+) which is analytic in a 
neighborhood of every point of!)+, the conformal factor 
n being also analytic. Let e/i! and e!)+ denote complexi
fications of iff and!)+, respectively. (At the present state 
of understanding it is unfortunately necessary to assume 
analyticity for the space-time /11. It is to be hoped that 
future developments will allow this restriction to be 
removed. In any case, a nonanalytic space-time can be 
approximated arbitrarily closely by analytic ones, It is 
not necessary that the complexification em extend very 
"far" from the real section ,11; the radius of convergence 
of the Taylor series at each point P of iff need only be 
some positive quantity E(P), and then E(P) will also de
fine how far into the complex eiff extends at P.) 

Certain cross-sections of e!)+ have been referred 
t012, 13 as "good cuts". These are the intersections of e!) + 
with null hypersurfaces N in e/l1 whose asymptotic 
shear-taking the appropriate measure of shear-van
ishes. There are, in fact, two measures of asymptotic 
shear for N, denoted a O and 0'0. For a real null hyper
surface N, we should have had au = aU, but for a complex 
N, aU and aU are independent quantities. We have the 
choice to make either aO = 0 or aO = 0 (but not both, if 
outgoing gravitational radiation is present). The choice 
aD = C has been normally made in earlier work. Here we 
select aO

, instead, since this fits in rather better with 
the notation for twistor space. 

Let u, t, and 'E be complex Bondi-type coordinates 
(cL Refs. 12, 13) for eSJ+, the points of !)+ being given 
by 1: = t, u real (I: = 00 being allowed). A "good" cross 
section X of e!)+ is defined by a "cut function" X=X(I:, E), 
satisfying the equation 

52X = (j'o(X, 1:, f), 

where X is defined by 

u=X(I:, E>. 

(3.1) 

(3.2) 

The quantity 1:, in Eq. (3.1), appears only as a param
eter; for each fixed value 1:0 of 1:, (3.1) defines a two
complex-parameter family of curves in (u, I)-space 
which are, in fact, null geodesics on C!)+. As 1:0 varies, 
we therefore get a three-complex-parameter family. 
Each such null geodesic y defines an asymptotic twistor 
Z"', but only up to proportionality. 

For the twistor Z'" proper (as opposed to the projec
tive twistor) we require also a "scaling" for y, This 
scaling will be necessary in order to assign a meaning 
to ~ =Z"'Z",. We have one more complex parameter for 
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the scaling, so the space T of asymptotic tWistors Z'" 
will be four-complex-dimensional. This scaling is act
ually achieved by assigning a spinor 'Tr A' at each point of 
Y, which is parallelly propagated along Y, and for which 
ZA'TrA' is a tangent vector to y. The tangent vectors to the 
generators of C!)+ (corresponding to the parameter u) 
are n 4 where n 4 =zAi

A
'. For any standard choice of lA 

and corresponding i A
' (where we normally take lA and 

iN parallelly propagated along generators of C+!), with 
'lA' =i"A' on !)+), the complex number 

(3.3) 

can be used to measure the required scaling for Z". 

To obtain the definition of~, we need to locate Y, the 
complex conjugate geodesic to Y on C!)+. Now any locus 
on C!)+ will have a uniquely defined complex conjugate 
locus, namely that which is obtained from the original 
locus when the point transformation of complex con
jugation is applied to C!)+. If real coordinates had been 
chosen for Jr, this would simply be the transformation 
sending each point of C!)+ into the one with the complex 
conjugated coordinates. But with the present choice, the 
complex conjugate of the point labelled (u, ~, ~) is 
labelled \It, 'E, 1). Thus, Y lies on the (1/, ~)-plane defined 
by t = 1;0. Furthermore, assuming that y is such that It 
attains a well-defined value Uo on it when t= Io, then 
Y and Y will each meet a (unique) common generator 
fl of C!) +, namely that defined by I; = 1;0' !: = Co' The 
two pOints of intersection of y and.y with /-L will then have 
respective u values lIo and Ito. lWe note also that.y is a 
member of the two complex-parameter family of £urves 
in the (u, /;)-plape which a~e defined by solutions X(L 1;), 
at ~ = ~o, of 5 2X(L 1;) =aO(X, t, 1;).1 We now define l 

~=i(uo-ilo)nAA'1TA'TrA" (3.4) 

which, by (3.3) and na = ZAZA', can be written 

~ = i(uo - uo) 1T1'Tr1" (3.5) 

We shall require a holomorphic parametrization for 
the system of Z""s, so that we can take derivatives of 
~ with respect to these parameters. The different solu
tions of (3.1) for fixed I; = 1;0 can be parametrized by 
pairs of complex numbers /-L0, fJ.l [constant of integration 
for the second-order ordinary differential equation 
(3.1)] and we assume that as to varies, the solutions 
(i. e., the curves y) vary holomorphically as IJ. 0, j.J.l 

vary holomorphically. Thus, we have a single holomor
phic function 

(3.6) 

of four variables satisfying (3.1), the different solutions 
of (3.1) being functions of ~ parametrized by /-L0, IJ.l, 
and to. Thus IJ. 0, 1J.1, and to are holomorphic coordinates 
for projective asymptotic twistor space PT. To assign 
coordinates to the nonprojective space T, we need to 
make sure that the scaling for Z'" is also appropriately 
parametrized. The quantity 'Tr 1' in (3.5) cannot be used 
as it stands, since it is actually not a holomorphic co
ordinate, being dependent on the value of ZA' at the inter
action of y with j.J. (which depends on y). However, the 
spinor 1T A' itself depends holomorphically on Z"'. What 
is needed is to choose a component of 1T A' in a holomor
phic way (i. e., in a way "independent" of Z",). 
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To achieve this, we may conformally rescale the 
metric on C!) + so that it becomes flat. The original 
metric on C!)+ is that induced by gab and may be taken to 
be 

A 4dt dt 2 
ds = - (1 + tt)2 + 0 • du (3.7) 

(cf. Refs. 8, 12). We rescale this to flatness by intro
ducing d~2 = (1 + tt)2 d'S2, which is induced on C!)+ by the 
4-metric 

iab = (1 + t~)2 gab' (3.8) 

The replacement of the vector na by 

k a = (1 + tt)-lna = (1 + I;It1zA'lA' = KA'KA' (3.9) 

naturally accompanies this rescaling (d. Ref. 12), and 
k a becomes covariantly constant on Cy+ with respect to 
gaP' We can arrange that /(A and 'K A

' are also covariant
ly constant on C!)+ with respect to iab (cf. Ref. 14). Now 
1T A' is constant along y with respect to gal> as well as 
with respect to gab (see Ref. 1, 2), so the scalar 
product 

(3.10) 

is constant along y and does not now depend on the inter
section of y with I = constant plane. In fact, r is a holo
morphic coordinate defining the scaling of Z" (r being 
now "independent" of y or of 2,,); substituting (3.10) and 
(3.9) into (3.5), we get (dropping the subscripts on 1/0, 

1/0' to and [0) 

~ = ~(Z"', Z",) = irr(1 + ?;[)(u - il) 

for the Kahler scalar on T, or 

~ = ~(Z"', W"J = irr(1 + tr)(u - it) 

(3.11) 

(3.12) 

for the complexified version cT of this (with W", = Z"'), 
where 

u=X(~;Jlo,Jl\I;), 

11 =X(t; jIo', "(;.1', h 
In the case of Minkowski space AI we can choose 

X(~; IJ. 0, IJ.l, t) = (1 + ttt1(1J. 0 + Jll~), 

X(t; 1).0', iJ,1', I) = (1 + It;tl(I).0' + 'Il1'1;) 

so that 

~(Z"', IV",) = ifi(fJ. ° + fJ. 1r - JIG' - jIl'I;). 

Then, introducing new coordinates 

zO=irlJ.°, zl=_irJll, z2=r, z3=_rl; 

(3. 13a) 

(3. 13b) 

(3. 14a) 

(3. 14b) 

(3.15) 

(3. 16a) 

(3 0 16b) 

we obtain the standard flat-space twistor form1 of the 
scalar product 

(3.17) 

The coordinates za, as given by (3. 16a), may also 
be used in the general case for a curved twistor space 
T, in place of r, Jl o, fJ.l, 1;. Notice that IJ. 0, Jll, and t 
are defined by the ratios of zO, zl, Z2, z3 while r scales 
all four proportionally. A similar remark holds for 
w O', w1', tf.'2', w3' in relation to the tilde variables. 
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Hence, ~ is indeed homogeneous of degrees (1,1) in 
the two sets of variables as is required for (2.2). The 
results of Sec. 2 may therefore be applied. 

The signature of (3. 17), given when wts',,; zts' is 
+ + - -. So the signature of GtsIl , is + + - - in the case 
of flat twistor space. The signature remains constant 
under continuous deformations for which the Kahler 
metric does not degenerate. The signature of the 
K1ihler metric of T must therefore also be + + - - . 

It is possible to obtain the Kahler curvature of T in 
a completely coordinate-free manner, but the details 
of this argument are hard to express. Consequently we 
summarize here only the direct coordinate calculation 
of the components of the curvature tensor. It is conven
ient to do the calculation in a new holomorphic coordi
nate system defined on T as follows: 

(3.18) 

(Note that ~ is not homogeneous in these coordinates. ) 
From (3.11) and (1. 5), we obtain the components of the 
metric tensor 

XO 
0 B 

Xl 
0 

X2 
IF A 

GrA = x
3 

xO' 
0 B 

Xl' 
0 

x 2' BT AT 
x 3' 

(3.19) 

with 

A = (i(l + tf)(X - X) 

ir[(1 + t t)(X - X) J, t 
ir[(l + tt)(X - X)], c ) 
irr[(l + tI)(X - X)], tC ' 

(3.20) 

where T denotes matrix transposition, - denotes com
plex conjugation, and commas denote partial derivatives 
as before. 

Using the facts that ~2X(f;IJ.°,lJ.l,t)='iJo(X t t) and 
52X(t ;"ji0' , "jil' ,I),,; a°(.i, "E, t), the component~ ;f the 
curvature tensor given by (1. 20) can be written in the 
form 

63 

- irr~o ax ax 
KAJ'B3' = 1 +tt a? a?' 

- irr" . ax 
KA3, 33' = (1 + (tV (U°5X + 00°) a? ' 
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_ [(j0(~X)2 + 2~ 0.0 + t5"2aO + bOUO] 

+ c,ofj O(X - xl), (3.21) 

where A and B take on values of ° and 1. The (10 quanti
ties are evaluated at the intersection of y with IJ. and the 
(10 quantities at the intersection of y with Il, i. e., 
O'O(u, 1:, f) and a°(it, r, 1:). The dots denote a/au and the 
t5 (ts) operator is applied to (10, ~o, and tXi0 (aO, (,0, and 
&70) keeping u and r (it and t) fixed. All other nonzero 
components of the curvature tensors can be obtained by 
using (1. 10) and (1. 11).15 (3.21) shows that the compo
nents of the curvature tensor are combinations of quan
tities K, K 1, K2, which have the striking form 

K = 52(10 + aO (to _ 520'0 _ ~Oao - lJofio (X - X), 
':'0 K ':':0 Kl = tsa , 2 = - a , 

(3.22) 

when ~ = 0, y and y intersect 11 at the same point 
(u = U), and K reduc es to 

Ko = "82aO + aOuo - 52(70 - ~oao. (3.23) 

The quantities K2, K1, Ko are the respective R-1, R-2, 
and portion of the R-3 part of the gravitational (Weyl 
tensor) field of;f1 in a standard notation (cf. Refs. 16, 
17), i. e., l/!g, l/!g and l/!g -lPg, R being an affine parameter 
on outgOing null geodesics. 

The components of the K1ihler "Ricci tensor" can be 
obtained either from contraction of (3.21) or from the 
coordinate expression 

A 1 a2 1n I G I 
K""II=K""AII ="2 ax"'ax" , (3.24) 

where I G I is the determinant of the matrix Gu . The 
Ricci tensor turns out to be identically zero. 

As a final remark, we note that if the Kahler scalar 
~ is replaced by log~, then we obtain a Kahler metric 
defined on the three-dimensional projective asymptotic 
twistor space. This metric becomes singular, however, 
on ~ == 0. It has Signature (+ + -) on the region ~ > 0 and 
(+ - -) on ~ < 0. In this form, the Kahler metric bears 
strong resemblance to the Bergmann metric18 for bound
ed domains in en. This may have relevance particularly 
when T is the twistor space defining a nonlinear gravi
ton,19 since then the full extent of T is the region ~ > 0, 
with boundary ~ = O. It seems likely that the metric 
studied here should also have Significance for the study 
of such "gravitons." 
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We study the existence of localized solutions to theories based on Weinberg's nonlinear realization of 
chiral SU(2)I8iSU(2). The analysis is done by using specific variations of the action integral and then 
checking the ensuing global conditions. The following cases are studied: (i) 7T fields only and without time 
dependence, (ii) 7T fields with simple time dependence, (iii) 7T fields coupled to gauge fields, (iv) the above 
with certain chiral symmetry breaking potentials. We find that only in certain special cases could there be 
localized solutions. In most cases the intrinsic nonlinearity of the system does not seem to be enough to 
guarantee their existence. 

I. INTRODUCTION 

Recently there has been renewed interest in attempts 
to incorporate localized classical solutions into quantum 
field theoretical calculations. 1 This is hoped to give in 
some respects better results than the usual method of 
quantization, because the essential nonlinearities of the 
system are then taken into account nonperturbatively. 

Generally speaking, these nonlinearities that support 
localized classical solutions can be divided into the 
following two types: (a) The nonlinearity is added by hand 
(e. g., by adding a spontaneously symmetry breaking 
potential) and (b) there is intrinsic nonlinearity in the 
system itself due to some symmetry principle (e. g., in 
Yang-Mills2 theory). We would, of course, prefer a 
theory which has natural nonlinearities as in case (b). 
A nonlinear theory could also be thought of as following 
from linear theory with a constraint, if after solving 
for the constrained fields we can express the linear 
Lagrangian of all fields as a nonlinear Lagrangian of the 
unconstrained fields. 

Among theories that have intrinsic nonlinearity we 
can include those based on nonlinear realization of 
chiral SU(2)® SU(2). 3 There has already been some in
terest in classical localized solutions of these sys
tems4

- 6 and of the associated linear system7 where the 
constraint is 2,,,, 1>~ == 1. The purpose of this paper is to 
study further the existence of localized solutions to the 
nonlinear system. 

By a classical localized so luI ion we mean a configura
tion which extremizes the relevant classical action in
tegral. From the semiclassical point of view one ex
pects that quantization is then taken care of by small 
fluctuations about that extremum configuration. To find 
this classical solution, the standard methods in calculus 
of variationsB lead to the Euler-Lagrange equations. In 
this paper we in general do not analyze the Euler
Lagrange equations but instead work directly with the 
action integral and get from it some qualitative results. 

The functionals that we are considering here are of 
the type 

(1. 1) 

To start with, we assume 1>01= In, where In is the space 
of bounded continuous functions on n, with continuous 

mth derivatives. To fully set up the variational prob
lem, we have to define in addition (0 the set of ad
missible functions M. There are various types of con
straints that could be relevant. For example, usually 
we assume the values of 1>0 and a j1>0 to be fixed on the 
boundary of n. Often some function(al) will be assumed 
to have a given value; recently many problems have led 
to situations where the constraint has been given by 
specifying a topological charge 9 for 1>. 

To give meaning to local extremum, we also have to 
define (ii) nearness for functions. To do that, one usual
ly starts with/J'/ and defines a norm" . II there and then 
restricts to M. Then one says that 1> c l= M gives, e.g., 
a local minimum if there is a positive real number 15 
such that 

El1>c] < El1>], whenever 1>1= M and II¢c-1>11 <15. (1.2) 

The following norms often appear in mathematical 
literature 8

: 

111> Ilo==max I 1> (x) I, (1. 3a) 

li1>lil==;a; i1>(x)i +~:;{~ [O;1>(X)]t
/2

, (10 3b) 

Obviously the set of functions near 1>c of (1, 2) is small
er if we use (1. 3b). It could be expected that the ex
istence of solutions to (1,2) depends on the definition of 
the norm as sometimes nearby functions Iji, which other
wise could give E[iP] < E[1> cl. could be eliminated by a 
stricter choice of the norm. 

In the particle interpretation of the solution a global 
minimum is more favored. In the quantized version it is 
expected that the particle corresponding to a local 
minimum would decay to a lower energy configuration 
through tunneling, provided there are no conserved 
quantum numbers to forbid this. However, if this 
tunneling can be considered to take some time, then we 
still could consider the solution to correspond to a par
ticle of finite lifetime. lThe ease of tunneling might 
suggest a proper definition for the norm.] 

Most of our analysiS on the existence of classical 
solutions is done using certain specific variations. For 
these variations the nearby functions depend on a con
tinuous parameter 7): 1>. == 1>(x; 7) with 1>(x; 1) == 1>c(x), 
Consequently, E will be a function of 7) with E(7) .01 

== E[1>cl. If 
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then a necessary condition for ¢lc(x) to give an ex
tremum of E[ ¢I] is 

2E(I1) I =0. (1. 5) 
27) ~ =1 

The most useful variational conditions are based on 
(i) ¢Ix = ¢I.('A.x) and (ii) ¢I( = ~¢lc(x). They have been used 
extensively before. 10 Of course, one may use these 
variations only if they do not violate the constraints of 
the problem, e.g., if ¢I(oo)=C",O, then (ii) is not al
lowed. Both variations do conserve topological charges 
that depend on the number of zeroes of ¢I. In addition to 
constraints, we also have to check that the condition 
(1. 4) is satisfied for the particular norm we are using. 
For (1. 3) this is done in Appendix A. 

In this paper we consider theories based on Wein
berg's nonlinear realization of chiral SU(2)0 SU(2). 3,11 

[For concise definitions, see Appendix B. Explicit 
forms in three different but equivalent formulations are 
given in Appendix C.] In Secs. II and III we consider 
theories with 7r fields only, first the time independent 
case (Sec. II) and then with simple time dependence 
(Sec. III). In Sec. II we also compare the results for 
the nonlinear realization with those for the associated 
linear but constrained theory. In Sec. IV coupling to 
gauge fields is added. We find that there are no classi
cal finite energy solutions except possibly such that 
limx _"" (7ra )2 = C ",0. In Sec. V we add some simple chiral 
symmetry breaking potential (without spontaneous sym
metry breaking), but again our results are in general 
negative. Chiral fields with fermions are not 
considered. 

II. TIME INDEPENDENT SOLUTIONS 
Consider the chiral Lagrangian 

L=- f i(o,,7ra)(o"7rb)Fab(7r2)atx. (2.1) 

We are looking for time independent solutions and there
fore our object is to extremize 

El7r]=i 1 (oi7ra)(oi7rb)Fab(7r2)d"x. (2.2) 

Let us now apply the scale variation 7r~ = 7ra (Ax) on 
(2. 2). We first get 

E[7rJ=A 2
- nEbrl. (2.3) 

Since we are only looking for nontrivial solutions with 
finite energy, we have 0< E < 00, Therefore, we can use 
(L 5) to get the necessary condition n=2 for a solution 
to exist. 

If we assume that 7r2 
- 0 as r - 00, we can also use the 

variation 7r(x)=~7r(x). Using this on the form (C8) gives 

~: 1(=1 = f {(2 i 1Ta)(2 i7ra) + i(2 i 1T2)2 

x l2 U; - 1T2)"' + 1T2 U; - 1T2)"2]} rl'x , (2.4) 

Since l7ra(x) I "'f.'fI XE B n we see that the first order 
variation does not vanish unless 7ra '" 0, so under the as
sumption 7r( 00) = 0 the functional (2,2) has no extremiz
ing localized solutions. 

The two-dimensional case that passes the scaling test 
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has also been studied by Duff and Isham, 5 who report of 
finding a solution. This is in conflict with our argu
ments of nonexistence in the previous paragraph. We 
are now going to analyze this further. Duff and Isham 
use the ansatz 

7ri=f~i'"i(p), i=1,2, 
(2.5) 

where p = (x~ + x~)1/2 and Xi =Xi/ p, Using the form (C8) 
gives the energy as 

El7ra] = f.27r 10"" p dp['l,2/ (1 _ ( 2) + a 2/ p2]. (2.6) 

A change of variables, 

a (p) == sinI:J(p), l:J(p) ==i<p(lnp), (2,7) 

is then used to give for if! the familiar sine-Gordon 
equation 

<p"(z) - sin<p(z) =0 (2.8) 

as the Euler-Lagrange equation. The solution to this is 

if! (z) == 4 arctane", 

so that 

(2.9) 

a (p) = sin(2 arctanp) == 2p/ (1 + p2), (2.10) 

The problem with this method is that the change of vari
ables (2,7) is only allowed if its Jacobian 2a/ol:J is non
zero. Now, as p goes from 0 to 00, the argument I:J in 
(2.7) goes from 0 to 7r, and we find that for 1:J==7r/2, 
OQl/ol:J =cosl:J ==0, 

The nonexistence of solutions to (2.6) can be also 
seen by using integral form for the Euler-Lagrange 
equation, which now is 

2p'l' / (1 - ( 2) == foP p' dp' 21}'la'2(1 _ ( 2)"2 + p,-2] + C, (2.11) 

For some fixed C the solution (2.10) should satisfy this 
for all p. This is clearly impossible, and instead of 
(2. 11), the following equation is satisfied formally: 

2pa' / (1 - a Z) = foP p' dp' 20'[0"2(1 _1}'2)"2 + p,-2]_ CI:J( p - 1), 

(2.12) 

where I:J is the step function and C is an infinite constant 

C = J
o 

00 20'p'll}' '2(1 _1l!2)"2 + p,-2] dp'. (2,13) 

Therefore, the Euler-Lagrange equation for I}' actually 
has a o-function singularity, 

The clearest way to see that happens is to use the W 
formalism (C7). Then we want to extremize 

E[1Tal=f.27r fo"" dppla;; +0'~p-2)(1 +a~)"2. (2,14) 

The first integral to the corresponding Euler-Lagrange 
equation is immediately found to be 

(2,15 ) 

The constant C is determined by a~ - 0 and a;; - 0 as 
p - 00, and so C = 0. For this value of C the solutions 
without corners are 

-1 a 1W=ap, a2W =ap , (2,16) 

neither of which is bounded. If the solution (2,10) is 
transformed into W representation using (C1) with 
(C14), we get 

Jarmo Hietarinta 66 



                                                                                                                                    

a W==a4>BW(a2) 

== [(1 + p2)/2pl[1 - 1(1 _ p2)/ (1 + p2) I] 

{
p (p ~ 1), 

== 1/ P (p ~ 1). 
(2. 17) 

This and all the other continuous solutions to (2,15) 
have corners. However, such solutions do not ex
tremize (2.14), because they do not satisfy the 
Weierstrass-Erdmann corner conditions8 at the corner 
point Po: 

(2.18) 

To avoid the restriction to n == 2 that comes from the 
scale variation the following modified Lagrangian has 
been proposed6 

(2.19) 

The condition from scale variation is 2p == n. However, 
the analysis with variation 1T - ~1T can still be carried 
through and leads to the same result of nonexistence. 

When we derived (2.4), we had to assume that 1T2(OO) 
==0. This is not very restrictive, since from (2.6) we 
see that it is also required in order to have finite en
ergy for this ansatz. The same applies for (2.19) with 
n == 3, P == ~ and if the hedgehog ansatz is used. 6 

So far we have been considering the nonlinear prob
lem, but since there is an associated linear problem, 
let us see how these results would apply to that case. In 
the linear theory we would have four fields 1T '" with a 
constraint 

(2.20) 

We could formally solve for 1To, say, and then express 
the linear Lagrangian nonlinearly in terms of the 1T;'S 

only, as in (C8). The difference between the linear and 
nonlinear methods comes from the fact that the sign of 
1To cannot be uniquely determined from (2.20), In the 
nonlinear theory this sign does not appear in the La
grangian and cannot be recreated by using the 1T ;'s, 
which are now assumed to give a complete description 
of the system. In the linear theory 1T 0 will continue to 
carry dynamical information in its sign, although its 
magnitude is fixed. 

If we look for an interpretation that guarantees the 
existence of a localized solution, then it is crucial to 
require 1To to change sign at p==l, where L~=I1T~==j.2. In 
that case the variation 1T; - ~1T; is forbidden, because 
for ~ < 1, Lj e1T~ <j/ always and then 1To would not have 
a zero. This sign change was utilized by Honerkamp 
et al. 7 Their solution to the linear problem has 1Tj as 
given in (2.5) and (2.10), but they also give 

1To == j,(1 _ p2)j (1 + p2), (2.21 ) 

which gives the required Sign change, 

Another possibility is to take the unbounded solution 
we gave in (2.16). This has been done in the Appendix 
of Ref. 6, but since we assumed boundedness for the 
fields we will not discuss it any further. 
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In conclusion then we have shown that the nonlinear 
realization of SU(2)® SU(2) does not have bounded solu
tions although the linear, constrained, system does. 
The extra field, although fixed in magnitude, is needed 
for topological reasons. 

"I. SIMPLE TIME DEPENDENCE 

For convenience, let us define 

cp==2-1/ 2(1T 1 +i1T2), cp*==2- 1
/
2(1T 1 _ i1(2)' (3.1) 

The simple time dependence that we are considering 
here can then be described by (XO == t) 

cp(x, t) == exp(iwt)'l' (x), (3.2) 

where .y can be complex. We still assume 1T 3 == O. Sub
stituting this into the Lagrangian (C8) gives the follow
ing action: 

A == - t J d"x[(a j1TO )2 - W 21T2 + Ha ;1T2)2U,2 _1T2)-1] (3.3) 

and charge 

(3,4) 

Now A should be stationary with respect to all varia
tions (keeping w constant). What amounts to the same is 
to require the energy (== -A - wc.!) to be stationary with 
respect to variations that keep (J fixed. Lagrange mul
tiplier technique leads then to (3.3).12 

To study the existence of solutions to this problem, 
we use the variation 

(3.5) 

With this variation c.! is conserved automatically. After 
a change in the integration variable we get 

A>. == - JA2 J d'X{(O;1TO)2 + i(oi1T2)2AnU,2 _ An1T2)-1} 

+iw2 J d'X1T2. (3,6) 

The condition of stationary action gives 

u--oA I 
- oX >.=1 

== - i f d'x{2(a i 1To F + i(o ;1T2)2l2U/ - 1T2) + nj/jU.2 
- 1T2)-2}. 

(3,7) 

Now the integrand is positive so the condition (3.7) is 
never satisfied with a nontrivial solution. 

We can also use ordinary scale variation 1T' - 1T"(Xx) 
on (3.3). This gives the condition 

(2 - n) J d"xl(a i1T")2 + i(o i1T2)2U,2 - 1(2)-1] + nw2 J d'X1T 2 == O. 

(3.8) 

Thus n> 2 is a necessary condition for the existence of 
any localized solutions. 

For the three-dimensional case we could take again6 

(Ot1Ta)2 = W 2(1Ta )2, (3.9) 

with 1T2 and (Oj1TO)2 time independent. Using this and the 
Lagrangian (2.19) with (Ca) gives the action 

s== - I lfxUUo;1T')2 - W21T2 + i(O;1T2)2U,2 _1T2)-1j}P. 
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The above variational analysis can again be carried out. 
If instead of (3. 5) we choose 

(3.11) 

then we get a result similar to (3.7), and the ordinary 
scale variation gives a necessary condition p < 1. We 
would like to point out that from the ordinary scale 
variation (which should be allowed irrespective of 
topological consideration) we always get the result that 
if the theory is set up so that it has time independent 
solutions, then it does not have solutions of the de
scribed time dependence and vice versa. 

IV. COUPLING TO GAUGE FIELDS 

In order to couple the pion fields to gauge fields we 
have to define the gauge covariant derivative to replace 
ai • (We consider only time independent cases and also 
take the time component of the gauge field to vanish. ) 
When the gauge field is Abelian we can defines 

/)na""Ojna +eEab1T bA j, a=1,2, 

G ii = 0 iA j - a ilp 

(4.1) 

(4.2) 

with 1T3=0.13 (Here EI2=_E21=1). The energy which is 
to be extremized is 

E= J tf'xltGijGij +W j1T"/J jn bFab(1T))· 

For a non-Abelian gauge field we define 

(4.3) 

(4.4) 

G~j=oiAj-oili+eEabCA~Aj (4.5) 

E=J tf'xl~GijGij+Wj1Ta/)j1TbFab(1T)]. (4.6) 

l This does not represent a gauging of the full chiral 
SU(2)G0 SU(2), but just its linear part.] 

For variational study we can in all of these cases use 
the scale variations 

na(X) - 1T~ = 1Ta(XX), (4.7) 

Aja)(x) - Aj~) = AAja)(xX). (4.8) 

The extra ,\ in (4.8) is chosen so that /) and G change 
according to (dropping indices) 

/)1T(X) - X/)n(Xx), G(x) - X2G(xx) (4.9) 

as can be easily seen by using the definitions before. 
The choice (4.8) guarantees also that limr.",rA(r) is 
invariant as is required by some conserved charge 
arguments. 

Substituting (4.7) and (4.8) into (4.3) and (4.6) gives 
in each case 

(4.10) 

where Ie and ID are X-independent. IG contains the pure 
gauge term (;2. and ID the covariant derivative part. IG 
and ID are obviously positive for a nontrivial solution, 
and they must both be finite to give finite energy. The 
variational condition is 

aE I () = -- = (4 - n)IG + (2 - n)ID , 
(l,\ ).d 

(4.11) 

from which we get the necessary condition n = 3 for a 
finite energy solution. 11 
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As is evident from the derivation, the result (4.11) is 
not limited to chiral theories. For example, for pure 
gauge theories (ID '" 0), (4.11) indicates that for n = 3 2 
there are no finite energy solutions, 15 but for n=4 such 
solutions are not excluded. 16 The nonchiral case Fab (1T 2

) 

=oab has been studied for n=3 by Prasad and Sommer
field, 17 who obtain solutions in closed form. 

We can also apply the variation 1T"(x)- ~1T"(x) on (4.3). 
This leads to (2.4) (with o/s replaced by/) i) and a 
negative result to the existence of a finite energy solu
tion. This variation does not exclude solutions with 
1T2 (oO) * 0. l The solution of Prasad and Sommerfield in
deed has rj>2(oO) *0.] 

Our conclusion from this section is that the nonlinear
ity of the chiral system does not change the results of 
existence or nonexistence from those of nonchiral 
theories. 

V. ADDITIONAL POTENTIAL 

In the previous sections the Lagrangian density was 
chiraUy invariant. We now add an extra potential ener
gy term V(1T 2

) and check its implications. Since we are 
mainly interested in whether chiral theories could have 
localized solutions due to their intrinsic nonlinearity, 
we do not consider potentials that support spontaneous 
symmetry breaking, 18 because in that case even stan
dard theories seem to have localized solutions. 1,12,17,19 
We therefore assume 

We also want the theory to describe pions with positive 
mass, so we want 

(iii) V'(n 2 )i.2=o=im;>0. 

The energy to be extremized is now 

Eln21= J lHili1Ta)(ili1Tb)Fab(1T) + V(1T 2)]£f'X (5.1) 

in the time independent case of Sec. II, In the W formu
lation the now allowed 1T - ~1T variation leads to the fol
lowing condition: 

J If.4(ili1Ta)2(j.2 _n2)/ (j; +1T2)3 + 21T2V'(1T 2 )]d"x =0, 

(5.2) 

so that we must have at least 

J V'(1T2)n 2 d"x < 0. (5.3) 

The same condition results for gauge coupling. lIn (5.2) 
0i'S would be replaced by LJ i' but the first term would 
still be positive.] 

With the simple time dependence of Sec. III we want 
to extremize l11 formulation] 

A = - J d"xUl (i3; 1Ta)2 - W
21T2 + }(o ;1T2)2(fn2 - n2t 1

] + V(n 2
)}. 

(5.4) 

For the variation we again take (3.5) and the condition 
then is 

J d"x{Co ina)2 +:Ha in2)2lJ~2 _1T 2 + ~nf;J(f; - n2 t 2} 

+nJ d"x{- V(n 2)+1T2 V'(n 2 )}=0, (5.5) 
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leading to the necessary condition 

J d'x{rr2V'(rr 2) - V(rr2)} < O. (5.6) 

Let us now take a look at some of the possible poten
tials. We assume that the symmetry breaking term 
transforms according to (N/2, N/2) under SU(2)® SU(2). 
This leads to a diffe rential equation for the potential. 3,20 
The solution to this equation can be expressed as 
Chebyshev polynomials of the second kind20 in the 
variable If(rr2)2l f2(rr2) + rr2»)' /2. If we add a constant 
(0,0) term so that V will satisfy the condition (ii), we 
get. for example, l VN/ 2): 

V, / 2 CXI-2, 

V, 0: 1 - 2 2 , 

2 = {j2(rr2)/lf2(rr2) + rr2l}' /2. 

For use in (5.3) we write l W formulation) 

V'/2=~m;rr2(1 +rr2/j/)-1 

V, = %m;rr2(1 + rr 2 /f.2>-2" 
Now 

rr2V;/2(rr2)=1m;rr2 (1 +rr2/f.2)+:y 0, 

2 T T1 ( 2) 1 2 2 1 - rr
2

/ f/ > 0 
rr y, rr = 2m.rr (1 + rr9 1.2)3 ~ , 

(5.7a) 

(5.7b) 

(5.8) 

(5. ga) 

(5.9b) 

and so neither of these potentials satisfy the condition 
(5.3). For (5.6) we use B formulation and get 

Vl/ 2 = m;f.2(1 - (1 _rr2/ f;)1 /2), 

V, = tm;rr2; (rr2) 
hence 

rr2V;/2(rr2) - V'/2 (rr2) 

= m;f.2(1 - %rr2/ f/ _ (1 _ rr2/ f.2)1 /2)(1 _ rr2/1;)-' /2 

.::; 0, 

rr2V;(rr2) _ Vj (rr2) = O. 

(5.10a) 

(5. lOb) 

Therefore, the only action that passes this test for 
N=I,2 is (5.4) with (5. lOa). Potentials with higher N 
could have symmetry breaking solutions rr2(00) *0. 

For a system with such a high symmetry we could 
also try to use variations related to that symmetry. 
Name ly de fine 

(5.11) 

then the chirally invariant part of the Lagrangian den
sity is automatically invariant under this variation. To 
use this for the symmetry breaking potential, we note 
that 

6 (rr2) =E2rra[Xp , rra] 

=E2rrP[j(rr2) + rr2g(rr2»). 

We could actually use a linear combination of XP's with 
constant coefficient, so that we get 

(5.13) 

[When applying this to (5.4), the explicit time depen
dence of 1T; has already been taken into account, there
fore, the term - (rr2) should be included to the sym
metry breaking potential. ] In all of the standard 
anslitze rra satisfies, however, the condition 
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I dO rra :=0, Va, (5.14) 

in which case the condition (5.13) is empty. If (5.14) is 
not satisfied, then (5.13) could be useful for further 
analysis. 

VI. CONCLUSIONS 

We have studied the existence of localized solutions 
for theories based on Weinberg's nonlinear realization 
of chiral SU(2)5<) SU(2). We have used the standard vari
ations cp(x)- cp(Xx) and cp(x)- ~cp(x) on the action in
tegral. In general our result is that the intrinsic non
linearity of the system is not enough to support confined 
solutions. Topological arguments would help in the case 
studied in Sec. II, if the nonlinear theory was consid
ered arising from a linear theory with a constraint. 
Some of the systems passing the test could have local
ized solutions even if the chiral nonlinearity is re
moved. An additional chiral symmetry breaking poten
tial seems to help in a speCial case in Sec" V" Although 
the results of this paper are rather negative, it would 
still be interesting to study whethe r some other non
gauge-type symmetry schemes could by themselves 
support localized solutions. 
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APPENDIX A 

Whichever norm we use, we will always assume that 
l11>cll < 00. Then it is easy to see that 1>, = ~ 1>c(x) satis
fies the condition (L 4): 

To discuss CPA = cp(AX) we first prove the following 
simple lemma. 

Lemma: Let r=[Z;; (X i )2Jl/2 and assume 1lt(x)='l1(r,O) 
(where 0 stands for angular variables) satisfies the 
following three conditions: 

(1) \.lI is continuous and differentiable with respect to 
r for all r> 0 and all 0, 

(2) for any R, rd\.ll/ dr is bounded for ° < r <R < 00, 

(3) limr_~'l1(r,O)=C(O), where C(O) is bounded for 
all O. 

Then for each ~ > 0 there is a positive real number 
o such that 

1</J(AX)-</J(x)1 <E, V XFR"-{O}, if lA-II <0. 

Proof: For simplicity assume A> 1. From assump
tion (3) above we get by Cauchy's criteria that there is 
a real number R such that 

lif(?tr, 0) - </J(r, 0) I <E, V r> R 

On the other hand since \.lI is continuous and differentia
ble in R" - {O} we can use the mean value theorem and 
get 

I </J (A r, 0) - </J (r, 0) I = I A-I I r I d</J (~ , 0)/ d~ I , 
for some ~ co [r, Ar). We need this only for 0 < r"" R" By 
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(2), rd>¥1 dr was bounded, so we can estimate 

IX-1Irl~: I < IX-11M. 
Therefore, by choosing ° =d M we complete the proof, 

We can now use this lemma to check (10 4). If the con
ditions of the lemma are satisfied by </J (</J and 0i</J], 
then we can use this variation with the norm (1. 3a) 
(1. 3b)]. The conditions (1) and (3) must be satisfied by 
any candidate for a classical solution (the poi nt r = 0 is 
left out to allow monopole-type discontinuities). One 
might, however, argue that boundedness of rd</JI dr and 
r(dl dr)(iJ icp) could be a too strict condition. In such a 
case results from the variation </J - CPA do not apply. 

APPENDIX B 

We follow Weinberg's definitions3 throughout. The 
algebra of generators of chiral SU(2)® SU(2) is 

[Ta, T bl = iEabcTc' 

lTa,xbl==iEab~c' (B1) 

[Xa, X b] == iEabcT CO 

The pion field 1Ta is assumed to transform nonlinearly 
under X a , 

lxa , 1T b] == - ifab(1T2) , 

and linearly under Ta , 

lTa' 1Tbl= iEabc1Tc' 

(B2) 

(B3) 

If f.b is assumed to be even, then the Jacobi identities 
lead to the form 

fab=Oa bf(1T 2) +1Ta1T bg(1T2), 

where 

g(1T2) = II + 2f(1T2)1' (1T2) II [f(lT2) - 21T21' (lT2 )1, 
and f is an arbitrary (reasonably regular) function 
V' '" [dl d(1T2)lf(1T2)}. 

(B4) 

(B5) 

Other fields are assumed to transform according to 

[Xa, <id = Vab(lT2)t b1/', (B6) 

lTb' 1/'1= - tb1/', (B7) 

where tb is an Hermitian matrix. The function v. b is 
given by 

Vab (lT2) = E.bclT cV(lT2) (BS) 

where 

V(lT2) =: {j(lT2) + [f2 (lT2) + 1T2]1/2}-1. (B9) 

The covariant derivative 

D" lTa '" dab (lT2)iJ ,,IT b (BlO) 

is assumed to transform according to (B6) and (B7). 
This determines dab and 

D"lTa a: (j2(1I'2) +11'21-1/ 20,,11'. 

_IF(,1T2)+1I'2]-1 '[1'(11'2) +iV(1I'2)]lTaiJ,,1I'2, (Bll) 

The kinetic part of the Lagrangian is then 

(Bl2) 
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Fab == f 2(0)(OabF + lTa IT bG) 

= f2 (O){Oa blF(1I'2) + lT2J-1 + 11'.11' blf2(lT2
) + 11'2]-2 

Xl411' 2U / )2_4f1' -lH. (BI3) 

APPENDIX C 

The nonlinear realization is covariant under the 
redefinition 

11': = 1I'a<l> (11'2) , (CI) 

provided we also change f and g by 

/*«11':)2) = f(1I'2)<l>(1T2), (C2) 

g* ((IT:)2) == l g(rr2)<l> (11'2) + 2f(lT2)<l>I (11'2) 

+ 21T2 g(1I'2)<l> I (11'2)]<1> (rr2)"2 0 (C 3) 

From (C2) we see that specific choices of f(1I'2) can be 
connected by suitable <l>, therefore giving equivalence 
between these realizations. The following definitions 
are common lthey will be referred to as W, E, and I 
formulations, respectively] 

/10'(11'2) = (1/ 2/.)(f.2 _lT2), 

/B(1I'2) = U.2 _1T2)1/2, 

/1(11'2) = (rr2)1/2 cot«lT2)1/2K), 

(C4) 

(C5) 

(C6) 

where K=3.14159 ••• /(2/.). For these choices of/we 
get the following Lagrangians using (BI2) and (BI3): 

[ W = - i (0" IT a )( iJ ''IT a )[ f.2 I U/ + 112) ]2 , 

[ B = - U (iJ" 11a)(O "11a) + t(iJ ,,112)2U.2 - lT2)"1 j, 

L 1 = - H(o ,,11a)(iJ"11a) sin2l(1I'2)1/2K]/ 112K2 

+ t( 0 ,,1T2)2{ I _ sin2l (1I'2)1/2K]I 1I'2K2} 1112). 

Let us define the transforming <l> AB by 

f: =fA<l>AB' 

Then 

J: (1I'2<l>~B (11'2» == fA (1T 2)<l> AB (11'2), 

(C7) 

(C8) 

(C9) 

(CIO) 

(Cll) 

from which we can solve for <l>AB' In (C4)-(C6) the 
parameter f. was chosen so that in each case f(1I'2 == f;) 
=0. We want the transformation (CI) to keep the points 
11'2 = 0 and 11'2 = f.2 fixed and this condition determines the 
functions <l> as follows: 

<l>WB = 2f.21 U; + 11'2), 

<l> WI = 2 arctan«11'2)1/21 f.)/ (1T2)1/2K, 

<l> BW = l/.2 - f.U.2 - 112)1/21/11'2, 

<l> Bl =arcsinl<1I'2)1/21 f.ll (1T2)1/2K, 

q, IW = tan[ (1I'2)1/2KI 2]f.1 (11'2)1/2, 

<l> IB = sinU1I'2)1/2K lJ. 1(11'2)1/2. 

The Jacobian matrix of the transformation (CI) is 

so 
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(C12) 

(Cl3) 

(C14) 

(C15) 

(CI6) 

(CI7) 

(CIS) 

(CI9) 
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Since cp *0 in the open interval (0,/;), we only need to 
check that cl>(1T2) + 21T2cp'(1T2) *0 for all O<1T2<f.20 From 
(C12)-(C17) this is easily shown. 
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Subgroups of the Euclidean group and symmetry breaking 
in non relativistic quantum mechanics * 

J. Beckers,t J. Patera, M. Perroud, and P. Winternitz 

Centre de recherches mathematiques, Universite de Montrea/' Montreal, Canada 
(Received 14 July 1976) 

A systematic study of explicit symmetry breaking in the nonrelativistic quantum mechanics of a scalar 
and a spinor particle is presented. The free Schrodinger (or Pauli) equation is invariant under the 
Euclidean group E(3); an external field will break this symmetry to a lower one. We first find all 
continuous subgroups of E(3) and then for each subgroup construct the most general (within certain 
restrictions) external field that breaks the symmetry from E(3) to the corresponding subgroup. For a scalar 
particle the interaction term is assumed to be of the form V(r) + A(r)P, where P is the momentum, i.e., it 
involves an arbitrary scalar and vector potential. For a spinor particle it is of the form V(r)+A(r)P 
+8(r) .. + M;k (r)CT; Pk (CT; are the Pauli matrices). A one·to-one correspondence between subgroups of E(3) 
and classes of "symmetry breaking potentials" is established. The remaining subgroup symmetry is then 
used to solve or at least simplify the obtained Schrodinger equation. The existence of a one-dimensional 
invariance group (for a particle in a field) leads to the partial separation of variables and determines the 
functional dependence of the wavefunction on one variable. A two-dimensional group implies the complete 
separation of variables and the functional dependence on two variables. A higher dimensional invariance 
group implies the separation of variables in one or more systems of coordinates and in some cases specifies 
the wavefunction completely. 

1. INTRODUCTION 

Several recent publications have been devoted to the 
problem of classifying all continuous subgroups of Lie 
groups that are of interest in physics. 1-5 In particular, 
all continuous subgroups of the Poincare group, the 
similitude group (the Poincare group extended by dila
tions), the de Sitter groups, and some further groups 
are now known. 

One of the physical motivations for undertaking a 
study of the subgroup structure of a given Lie group is 
the interest in symmetry breaking in physiCS. Indeed, 
consider a physical system that has a symmetry, de
scribed by a certain Lie group G. This symmetry 
group, once found, can be used to determine some, 
and in certain cases all, of the properties of the system 
under consideration. The system itself may then be 
modified by taking into account further interactions, by 
being placed into an external field or into an environ
ment imposing certain boundary conditions, etc. Typi
cally such a modification will change the symmetry 
properties of the system, often lowering the symmetry 
or destroying it completely. 

We are interested in a systematic study of the case 
when the additional "influence" does lower the sym
metry group from the original G to a subgroup G j C G. 
A classification of all subgroups G j thus provides a 
classification of all symmetry breaking interactions 
(or other influences) for a given system. For each sub
group G j we thus wish to find the most general interac
tion that breaks the symmetry from G to G i" The sub
group G i can then be used to study the new modified 
system. Thus, the generators and invariants of G j will 
provide integrals of motion and quantum numbers for 
the system. The representation theory of the group G j 

will provide wavefunctions of the system, or at least 
many properties of the wavefunctions. 

We intend to pursue this line of thought in connection 
with various types of symmetry breaking for a variety 

of physical systems. In particular we plan to investi
gate systematically from this point of view many of the 
differential equations and Hamiltonians of classical and 
quantum physics, both in the relativistic and nonrela
tivistic cases. 

The present article is devoted to a particularly sim
ple and intuitively clear case, namely that of a stable 
nonrelativistic scalar (spin-O) or spinor (spin-~) parti
cle in an external field. We restrict ourselves to a 
study of explicit symmetry breaking in the Schrodinger 
(or Pauli) equation, due to the introduction of scalar 
and vector potentials into the Hamiltonian. 

The geometric invariance group of the Hamiltonian 
for a free particle is the Euclidean group E(3), gen
erated by the rotations and translations of a three
dimensional real Euclidean space. The continuous sub
groups of E(3) are known, 6 as is its representation 
theory. 7-9 We shall modify the Schrodinger equation by 
introdUCing a scalar and a vector potential, both depend
ing on the particle coordinates and the Pauli equation by 
introducing potentials depending on the particle coordi
nates, momenta (linearly) and spins. For each sub
group G j of E(3) we shall find the most general potential 
(within the considered Ansatz) reducing the symmetry 
from E(3) to G j • 

In Sec. 2 we shall discuss some properties of the 
group E(3), construct a lattice of its subgroups (see 
Fig. 1) and present some relevant results on its repre
sentation theory. In Sec. 3 we consider a scalar parti
cle and for each subgroup of E(3) explicitly construct 
the symmetry breaking potentials. The results are sum
marized in Table I and discussed in the same section. 
The same problem for a spinor particle is solved in 
Sec. 4 in which we present and discuss a somewhat 
cumbersome list of "subgroup invariant" potentials. 
In Sec. 5 we demonstrate, first for a scalar, then for a 
spinor particle, how the remaining symmetry group 
can be used to investigate the obtained Schrodinger 
(or Pauli) equations. The existence of a one-dimensional 
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invariance group leads to the partial separation of vari
ables in some system of coordinates and to the explicit 
form of the dependence of the wave functions on one 
variable. Higher-dimensional invariance groups lead 
to the complete separation of variables in one or more 
coordinate systems and provide the dependence of the 
wave functions on at least two of the variables, in some 
cases on all three of them. The conclusions and future 
outlook are presented in the final Sec. 6. 

2. THE EUCLIDEAN GROUP E(3) AND ITS 
SUBGROUPS 

The group E(3) is defined as the group of transforma
tions of the three-dimensional real vector space, leav
ing the Euclidean distance between two points invariant. 
Thus, we can write an element of the group as (A, a), 
where 

3 

x;=LAj~k+aj, i=1,2,3. 
k=l 

(1 ) 

Here A;k is an 0(3) matrix and aj are the components of 
a real vector. The Lie algebra of E(3) is generated by 
three infinitesimal rotations J j and three infinitesimal 
translations P p satisfying the commutation relations 

[J j , J k ] = i€iklJ i' [J;, P k] = i€;kIP p lpp P k] = O. (2) 

E(2) I)Q T(l): 

We shall also have the opportunity to use the parity 
operator n and time reversal operator T, satisfying 

nJ;n-1=Jj , nPjn-1=_pp 

TJjil = -Jj , TPjT-1 = -Pi' 
(3) 

The finite transformations (A, a) obey the composition 
law 

(Al>al)(A2,a2)=(AlA2,al + A1a 2)· (4) 

All subalgebras of the algebra (2) can be found by a 
direct application of a classification algorithm presented 
earlier. 2 Indeed, the algebra L of E(3) has an Abelian 
ideal, namely the translations T ={pu P 2 , P 3}. 

The factor algebra F= L/ T is isomorphic to the rota
tion algebra 0(3). According to the algorithm we pro
ceed as follows: 1. Find all conjugacy classes lunder 
0(3)] of subalgebras Fa of F. These can be represented 
by Fl =={JUJ 2,JJ, F 2 =={J3} and F3={O}. 2. For each 
subalgebra Fa (a = 1, 2, 3) find all invariant subspaces 
Ta,k in T. Use the normalizer of Fa in E(3) (Le., all 
Euclidean transformations leaving the subalgebra Fa 
invariant) to classify the invariant subspaces into con
jugacy classes. Taking a representative of each sub
space, we obtain all "splitting subalgebras" of L as the 

0(2): J
3 

FIG. 1. Subgroups of E(3); E(n), T(n) , and O(n) are groups of Euclidean transformations, translations, and rotations, respective
ly; Em and urn are the universal covering groups of E(2) and 0(2). 
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algebraic sums Fa -+- Ta,k' 3. Find all nonsplitting sub
algebras of L, Le., such subalgebras that contain ele
ments of the type Jj + X with Jj E F, X E T, that are not 
conjugate under E(3) to an element of F or of T. To do 
this, we consider each subalgebra Fa separately. We 
take all generators of Fa and add to each of them an 
arbitrary linear combination of all generators of T. We 
then use the translations expT and the outer auto
morphism of Fa in E(3) to Simplify the general linear 
combinations as far as possible. Finally we must assure 
that the generators thus obtained, together with the gen
erators of a chosen invariant subalgebra Ta,kE T, form 
an algebra. 

This procedure leads directly to the lattice of sub
algebras shown on Fig. 1. In each box we give the gen
erators of the Lie subalgebra and also comment on the 
corresponding Lie group [E(n),O(n), and T(n) are the 
groups of Euclidean transformations, rotations, or 
translations of an n-dimensional real Euclidean space, 
respectively]. The parameter a, occuring twice in 
Fig. 1, satisfies a *0, - 00 <a < 00 if conjugation is con
sidered under the proper Euclidean group and a> ° if 
parity and/or time reversal are included. 

The representation theory of the group E(3) is well 
known,7-9 and we need not go into it here. Irreducible 
unitary representations can be labelled by a pair of 
real numbers, namely the eigenvalues of the two 
invariant operators 

p 2 and (J,P)/P2
, 

corresponding to the energy and helicity of a free 
particle. 

(5) 

We shall actually make use of a certain type of reduc
ible representation of E(3). Consider the Hilbert space 
L2(R\ C2}+I), of normalizable 2j + 1 component spinors, 
each component of which is a complex valued function 
of the space coordinates X 1'X2'X3 • Consider now an ele
ment g= (1\, a) of the universal covering group E(3) of 
E(3) and represent it by the operator U(g) acting on 
I/w L2(R3, C2i+1

) as 

(6) 

Here Di(i\) is a (2j+l)X(2j+1) matrix realizing an 
irreducible unitary representation of SU(2) (its matrix 
elements are Wigner D functions). It can actually be 
proven that more generally any representation of the 
form 

where S(g, r) is a unitary operator acting on the space 
C2 j+l, is unitarily equivalent to (6)0 

In this article we shall make use of representation 
(6) for j = 0 and j = t. For j = 0 we Simply have the 
"quasiregular representation, ,,10 and ljJ(r) is a function 
satisfying 

(7) 

For j = t, ljJ(r) is a two-component spinor satisfying 

¢(r) ~ (:::::).f {I ¢,(rli' + I ¢,(r) I 'lax dy dz <~. (8) 
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3. SCALAR PARTICLE IN AN EXTERNAL FIELD 

Let us consider the Hamiltonian 

H=- ~~+ V(r) +A(r)P, (9) 

where V(r) and A(r) are a scalar and vector potential and 
Pa = - ia/ ax. are the components of the linear momentum 
operator. 

If we require that the Hamiltonian be a Hermitian 
(or at least symmetric) operator, satisfying H==H+, 
we find 

A(r)=A*(r), ImV(r)=-tdivA(r). 

Thus, A is a real vector function and the imaginary 
part of V is determined by A. 

If parity conservation is assumed, we must have 

nHn-1=H. 

This implies 

V(-r)= V(r), A(-r)=-A(r). 

(10) 

(11) 

(12) 

Time reversal can be represented by an antiunitary 
operator T=K (where K is complex conjugation). The 
time reversal transformation implies 

(13a) 

where H is the time reversed Hamiltonian. The manner 
in which ii is related to H depends on the physics of the 
problem. Thus iT = V but i.. = - A if we are studying a 
particle in an electromagnetic field (the electric field 
vector E goes into itself, the magnetic field H changes 
sign). Thus, if A is the electromagnetic vector poten
tial, time reversal invariance implies 

V(r) = V*(r), Ai(r)=Af(r). (13b) 

Let us now consider invariance under subgroups of 
the Euclidean group E(3). Consider the representation 
(6) with j =0, and let g be a transformation belonging 
to a subgroup of E (3). The invariance condition is 

U(g)H U(g)"l = Ii, (14) 

which implies 

(15) 

Algebraically the "global" invariance conditions (15) are 
equivalent to the requirement 

lH,X.]=O, (16) 

L e., that the Hamiltonian should commute with all 
generators Xa of the subgroup, 

Let us now consider each of the subgroups of E(3), 
proceeding from lower dimensions to higher ones. In 
each case it is a simple matter to solve the appropriate 
equations (15) or (16) and thus to find the invariant 
scalar and vector potentials V(r) and A(r). We simply 
list the results of these calculations in Table I. 

Several comments on the results of Table I should be 
made. 

1. We make use of several different types of coordi
nate systems in Euclidean 3-space, namely, 
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TABLE 1. Subgroups of E (:l) and invariant potentials in spin-O Schrodinger equation. 

No. 

1 

2 

4 

5 

6 

7 

8 

9 

10 

11 

Generators of 
symmetry group 

a"'O 

J!,J2,J:j 

Pl>P2,Pj 

(a) Cartesian: Xl>X 2 ,X3 

Coordinates used in 
potentials 

Cartesian 

Cylindrical 

Helical 

Cartesian 

Cylindrical 

Spherical 

Cylindrical 

Helical 

Cartesian 

Cartesian 

Cartesian 

(b) Cylindrical: p = (xi + X~)1/2, cp =arctan(x/ Xl)' 

(c) Spherical: r= (xi + x~ + X~)1/2, e =arccos(x:! r), 

cp =arctan(x/ Xl)' 

(d) Helical: p=(xi+x;)1/2, u=(1/2a)(z+acp), 

l'=(1/2a)(z-acp), 

where a> 0 is a parameter and z and cp are cylindrical 
coordinates. 

2. There is a one-to-one correspondence between 
subgroups of E(3) and the general form of a Hamiltonian 
of type (9) left invariant by the subgroup, 

3. A scalar potential V(r) alone is not sufficient to 
distinguish between all subgroups. Indeed, the groups 
E(3), E(2):9 T(l), E(2), and T(3) all imply V = const. 
Similarly T(2) and E(2) both imply V = V(z). The reason 
for this is that the requirement of homogeneity (trans
lational invariance) is so restrictive for a scalar poten
tial, that little space remains for manifestations of 
anisotropy. 

4. The Hamiltonian of a spinless particle in an elec
tromagnetic field can be written as 

H = ilp - eAE (r»)2 + cp(r), 

i. e., is of the form (9) with 

A(r) = - eAE(r), 

V(r) = cp(r) + 1e2A1( r) + (ie!2)div[AE (r)], 

(we have put It = m = 1). A gauge transformation 
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(17) 

(18) 

(19) 

Vir) 

V(X!,x2) 

V(p,z) 

Vip, v) 

V(X3) 

Vip) 

Vir) 

Viz) 

V=const 

V= const 

V= const 

V= const 

A(r)P 

a(e, z)rP+ hip, ziP, + c(p, z)J'j 

j(p, v) (cosuP! + sinuP2) 

+ g(p, v) (- sinuP! + cosuP2) + h(p, v)P3 

A(xaiP 

a(r)rP 

jlcos(u + viP! + sin(u + v)P21 

+ g(sin(u+ viP! - cos(u+ v)P21 + hP3 

j,g,h=const 

AP, Aj = const 

aP" a = const 

where j(r) is an arbitrary real function, leads to a new 
wavefunction, differing from the original one by a phase 
only: 

ljJ(r) _1jJ(r)eif(r). (20) 

If we are only interested in IIjJ(r) 1
2

, then gauge invariance 
can be used to simplify the obtained Hamiltonians 
furthe r. In particular all constant scalar and vector 
potentials can be transformed away, many of the dif
ferent potentials obtained become equivalent, etc. 

5. Notice that invariance under T(3), E(2), E(2):9 T(l), 
or E(3) specifies H up to certain constants. The groups 
T(1), 0(2), or 0(2) imply that H can depend on two vari
ables in an arbitrary manner. The groups T(2), 
0(2):9T(1), 0(3), or E(2) allow for an arbitrary depen
dence on one variable. By the same token, if T(3), 
E(2), E(2):9T(I), or E(3) is the invariance group then 
group representation theory will completely determine 
the wavefunctions, energy levels, etc. In all other 
cases group theory will only provide some properties 
of these physical quantities. 

6. We have not imposed parity or time reversal in
variance. Applying relations (12) and (13) to the entries 
of Table I we see that we would obtain further restric
tions on the functions and constants in columns 4 and 5. 
Thus, e. g., in the case of spherical symmetry the 
pseudoscalar (rP) is excluded by parity conservation, 
unless the coefficient a(r) is itself a pseudoscalar. We 
shall not go into these considerations here. 

4. PARTICLE WITH SPIN % IN EXTERNAL FIELD 

Let us now consider the Hamiltonian 

(21) 
where V, Ai' b j and Mjk are arbitrary functions of the 
coordinates, P is again the linear momentum, and CI; 

are the Pauli matrices. 
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The hermiticity condition H = W implies 

Bi(r) =bj(r), lHik(r) =Mik(r), 

ImlV(r)]=- ~ abk(r) , ImlA;(r)]=- ~ aMik(~. (22) 
2 aXk 2 aXk 

Parity conservation in this case implies 

V(-r)= V(r), A(-r)=A(r), 

b(- r) = - b(r), M ik(- r) = - M;k(r). 

The antiunitary operator representing time reversal 
can in this case be written as 

where K is the operator of complex conjugation. The 
time reversal transformation gives 

THy-1 = - t~ + V*(r) -A *(r)a - B*(r)P 

(23) 

(24) 

(25) 

The form of the Hamiltonian H for the time reversed 
process depends on the properties of the external 
quantities V, A, B. and JVI ik , and we leave this question 
open. 

We now make use of the representation (6) with j = ~ 
to study the implications of the invariance of H under 
subgroups of E(3). The invariance condition U(g)HU(g)"1 
=H in this case implies 

V(r) = V(gr), Dlk(A)Ak(r) =Ai(gr), 
(26) 

Dlk(A)bk(r) =bi(gr), Dlk(A)D:j(A)Mkj(r) = Mil(gr). 

The global invariance conditions (26) are again equi
valent to the requirement lH, X.l == 0, i. e., that H should 
commute with all generators of the subgroup. The gen
erators in this case are realized as 

(27) 

Let us again consider each subgroup separately. 

A. Translations T(1): P3 

Invariance under translations generated by P3 implies 
that V. A, Band Mik all depend on X, and x 2 only: 

V(r)=V(x l ,x2), A i (r)=a i (xjOx 2 ), 

bi(r) == bi(xjO x 2 ), Mik(r) = mik(xjO x 2 )· 

In addition, if H=H+ we have: 

bi(xjO x 2 ) = bt(xjO x 2), mik(x ll x 2) = mtk(x ll x 2), 

B. Rotations 0(2): J 3 

(28) 

(29) 

Requiring that lJ 3' H] == 0 and using cylindrical coordi
nates, in which J 3 = - ia/a¢ + ~U3' we find 
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These equations can be immediately solved to give 

V = F(p, z), Al = al (p, z) cos¢ - a2 (p, z) sin¢, 

Mil =M(p, z) cos2¢ + N(p, z) sin2¢ + DI(p, z), 

M22 == - M(p, z)cos2¢ - N(p, z) sin2¢ +DI(p, z), 

M'2 = - N(p, z) cos2¢ + M(p, z) sin2¢ + D2(p, z), 

M21 = - N(p, z) cos2¢ + M(p, z) sin2¢ - D 2 (p, z). 

(30) 

(31) 

(32) 

The hermiticity conditions (22) in this case imply that 
bi,mi,ni,M,N, and D j are real functions and that 

ImV=- ~(abl + ~b + ab3) 
2 ap p I az ' 

1 (OM aDI 2 amI) Ima = - - - + - + - M + -
I 2 ap ap p az' 

(33) 

Ima ==_ ~(aN + aD2 + ~N- ~m2), 
2 2 ap ap p az 

Putting (32) into (21), we obtain a Hamiltonian that is 
explicitly 0(2) invariant. It can be written, e. g., in 
terms of 0(3) scalars (or pseudoscalars) like (roo), 
(rP), (uL), and (uP), the third components of vectors 
(or axial vectors), like U 3 ,P3 , L 3 , (r x O-)3' (o-XP)3' 
and the appropriate components of higher order tensors, 
like lM(p, z)/ p2][2x IX2 (-U1P I +U2P 2 ) + (x~ -X~)(U1P2 +U2P 2)), 

etc. 

C. Universal covering group 0(2): J 3 + aP 3 

We use helical coordinates and reduce the problem 
to that of 0(2). The resulting Hamiltonian is given by 
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formula (21), in which all the functions V,ApBpM;k 
are given as in (32) with the replacements 

p-p, z-v==(1/2a)(z-acp), cp-u==(1/2a)(z+acp). 

(34) 

The hermiticity conditions are now somewhat different, 
namely 

1 [ (ab l 1 ab2 1) 1m V == - 2" COSV ap - 2p av + 2p b) 

_ sinv(an2 + ]_ an1 + ~n.) +]_ am 3], 

ap 2p av 2p 2) 2a av 

+ - + - + - - - - + - - smv (
aM M 1 aN aD1 1 aD2) . 
ap p 2p av ap 2p av 

All arbitrary functions on the right-hand side of (35) 
depend on p and v only. 

D. Translations T(2): P I ,P2 

The Hamiltonian is (21) with V, Ai' b;, and M;k 
depending on z only. Hermiticity implies 

Iml V(z)] == _ ~ dB;;Z) , Im[Ai(z)] == _ ~ ~~3(Z) . 

E. Cylindrical group 0(2) ® T( 1): J 3, P 3 

(36) 

The Hamiltonian is given by (21) with the coefficients 
as in (32) with the added condition that ai' bi , m i , nt, 
M, N, D;, and V depend on p only. 

F. Translations T(3): PI, P2 , P3 

The Hamiltonian is given by (21) with all coefficients 
constant and real. 

Making use of some elementary tensor algebra or, 
equivalently, requiring that say J 1 commutes with the 
Hamiltonian given by (32), we obtain the general 0(3) 
invariant Hamiltonian: 
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H == - ~A + V(r) + a (r)(aP) + b(r)(ar) 

+ c(r)(rP) + d(r)(aL). (37) 

Note that the a(r) and c(r) terms violate parity conserva
tion. Hermiticity implies that a(r), c(r), and d(r) are 
real and that 

Iml V(r)] == - tl3c(r) + rc'(r)], Im[b(r)] =-(1/2r)a'(r). 

(38) 

H. Euclidean group E(2): J 3 ,PI ,P2 

The Hamiltonian in this case is obtained by consider
ing the conditions (32) and imposing lpu H]=[P2,H] 
== (l. The result is 

H == - ~A + V(z) + a(z)(aP)+b(z )0"3 + c(z)P 3 

(39) 

Hermiticity implies that b(z), c(z), d(z), and e(z) are 
real and 

Iml V(z)] == - ~b'(z), Imla(z)] == - Hc'(z) + d'(z)]. (40) 

I. The group E(2): J 3 +aP3 , PI, P2 , a"* 0 

Invariance with respect to J 3 +aP3 gives relations (32) 
with the substitution (34). Adding the requirement of 
translational invariance, we find 

V=const, 

Al ==a1 cos(z/ a) - a2 sin(z/ a), 

A2 == a1 sin(z/ a) + a 2 cos(z/ a), 

Bl == b1 cos(z/ a) - b2 sin(z/ a), 

B2 == b1 sin(z/ a) + b2 cos(z/ a), 

MI3 == m1 cos(z/ a) - m 2 sin(z/ a), 

M 23 = m 1 sin(z/ a) + m 2 cos(z/ a), (41) 

Mll =M cos(2z/ a) + N sin(2z/ a) + Du 

M22 == - M cos(2z/ a) - N sin(2z/ a) + Dl' 

M12 = - N cos(2z/ a) + M sin(2z/ a) + D 2 , 

M21 = - N cos(2z/ a) + M sin(2z/ a) - D2 , 

where all the coefficients ai' bp m i , nt, M, N, and D j 

are constants. The hermiticity conditions (22) in this 
case imply that b j , np D i , M, N, V, and a3 are real and 

I m a 1 =m/2a, Ima2 =-m/2a. (42) 

J. The group E(2)-® T(1):J 3 ,P1 ,P2 ,P3 

The conditions [J3 ,H]==[Pu H]==lp2 ,H]=O lead to the 
Hamil tonian (39). The additional condition lp 3' H] == (l 
implies that a, •.. ,e in (39) are all real constants. 
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K. The entire Euclidean group E(3) 

Requiring that the Hamiltonian (39) should commute 
with 1\ and be rotationally invariant (commute with say 
,J1 ), we find the Euclidean invariant Hamiltonian 

11=- ~~+ V+c(aP), (43) 

where V and (' are real constants. 

Thus, as in the case of a scalar particle, we find a 
one-to-one correspondence between subgroups of E(3) 
and symmetry breaking terms in the Hamiltonian. 
Again, symmetry under T(3), E(2), E(2))9 T(l) or E(3) 
specifies H up to some constants. All other symmetry 

TABLE II. Solutions of Schrodinger equation. 

No. Symmetry Separable 
group coordinates 

1 T(l) Cartesian 
coordinate z 

2 0(2) Cy lindrical 
coordinate q, 
(azimuthal angle) 

" e)(2) Helical 

4 T(2) Cnrtesinn 

:) 0(:2):;', TO) Cylindricnl 

G 0(:1) n. Sphericnl 

7 E(2) a. Cartesian 

b. Cylindrical 

c. Parabolic 

d. Elliptic 

cylinder 

Eigenfunctions 
l}J(r) 

<t(x,y) exp(ik,z) 

<Hr, z)eim0 

<I>(p, v)e iwu 

<I>(z) exp[i(k1x+ k2y)] 

<!> (p)e im0 exp(ih,z) 

<I>(z) exp!i(k1x+1l 2y)] 

<I> (Z)Jm(Kp)eim<l> 

4' (z) D _/w2 I (2K)-1 I, (iK~) 
X Diw2 I (2K)-1/2 (iKTj) 

tenia:, q)c€n({3, q) 
<I>(z) 

Sen (a: ,q) sen ({3, q) 

if tf2K2/4 

groups allow for the presence of arbitrary functions of 
one or two variables. Gauge invariance could be added 
to our requirements to simplify the obtained results, 
and parity and time reversal invariance would pose fur
the r restrictions, which we do not go into. 

5. WAVEFUNCTIONS FOR THE SCHROOINGER 
EQUATION WITH AN INVARIANT HAMILTONIAN 

We shall now consider each of the Hamiltonians found 
in Sec. 3 and 4 and show how the invariance with respect 
to a subgroup of E(3) allows us to obtain solutions of the 
Schrodinger equation, or at least some properties of 
these solutions. 

Additional equations 

(J, f aP)I)J~ wif 

Pl",~kl</1, P2",~k2</1 
<I>"(z)+ 2iA , (z)<I>'(z) - 2[V(z) - E ~! (kl' k~) tAl (z)k 1 + A 2(z)k) 

x<I>(z)c 0 

J1I}J - 1Jl ~, PII/! c Ill'" 

<I>"(p) t [1/ p t 2ipa(p)]q,'(p) - 2[V(p) - E t 1II'/2p2 1Il)l2 + b(p)ll j 

I c(p)m] <p(p) ~ 0 

J2", l(l + 1)</1, J I", c_ IIII/! 

J2<J, l(ll 1) I/! , (Jl + r 2JJ)1)J ~ K'I}J 

h~K2/4, h'~J(JI1)-K'/4 

a. and b.: 

<I>"(r) + 2[1/r + ia (r)r] <I> '(r) - 2[V(r) -E + Z(Z + 1l/2r2]q,(r) = 0 

(Pi C pl)I}J K21/!, PiI}J" I<i</l, i·· 1,2, III + IlJ K' 

(Pr+pl)I/!-K'I/!, J;</I=IIII}J 

(pi + p!)</I ~ K21/!, (J jP 2 T P~)I/! = w21/! 

(Pi + P~)I/! = K2</1, (J~ + d2p!J1/! = w~1/! 

a., b., c. and d. : 

<I>"(Z) ~ 2ia (z)CP' (z) - 2[V(z) - E +~K2]<I>(Z) 0 

8 E(2) Cartesian e-ihzZ(z/2a + a:/2) exp[i(1l1x+ k2y)] Pi </I = Il i l/!, i= 1, 2 

9 T(:l) Cartesian 

10 E(2)@ T(l) a. Cartesian eitr 

b. Cylindrical Jm(Kp)imtl>eik:JII 

c. Parabolic D _iw2 / (2K)-1 /2 (iKO 

cylinder x Diw2/ (2K)-1/2 (iKTj)e ik:jZ 

d. Elliptic Cen(O!, q)c€n({3, q)} e ik3z 

cylinder Sen (O!, q) sen ({3, q 

11 E(3) See text and articles on Helmholtz equation. 
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Zll (~) + 4a2(A - D + 2D coS2~)Z(~) = 0 (Mathieu equation) 

A-2(E V>-kl-kl, Dcosa:~-fkl+gIl2' DSinO!=jIl2+gk l 

-P/</I •• ki</l, i=1,2,3 

k2+VIAk~E 

(PI j P~)I/!=K2</1, P/</I=k;>f, i~l,2,3, kl+k~=K2 

(pI+p~)</I=K2</1, J 3</1=m</l, P3</1=k3</1 

(pI+p!)I/!=K21/!, (J~2+P2J3)</I~w21/!, PI~=1l3</1 

(PI +P~)1/! = K21/!, (J~ + tf2PlJ1/! = w~1/!, P 31/!= k31/!, 

E = ~ (K2 + k~) + V + ak 3 
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TABLE III. Separable coordinates, diagonal operators and eigenfunctions in Table II. 

Coordinates Operators 

Cartesian: x, y, z 

Cylindrical: x = p coscp, y = p sincp, z 

Elliptic cylinder: x =d cosh CY. cos{3, y = d sinhCY. sin{3, z 

Spherical: x=rsinOcoscp, y=rsinOsincp, z=r cosO 

Eigenfunctions 

Exponentials 

Bessel and exp 

Parabolic cylinder 13 

Mathieu and associate 
Mathieu13 

Spherical harmonics 

Conical: x =rsn(CY., k)dn({3, k'), y = rcn(O', k)cn({3, k'), z = dn(CY., k)sn({3, k') 
(Jacobian elliptic functions) 

Lame polynomials14 

Helical: x=pcos(u-v), y =psin(u-v), z=a(u+v) 
(nonorthogonal; partial separation) 

A. Scalar particles 

Let us consider the Schrodinger equation 

l-~~+V(r)+A(r)P]<p=E<p (44) 

and specify the interactions VCr) and A(r), following 
Table I. 

First of all, if (44) is invariant with respect to E(3), 
then A = 0, VCr) = V = const, and (44) reduces to the 
Helmholtz equation. It is well known that the Helmholtz 
equation allows the complete separation of variables 
in 11 orthogonal systems of coordinates. 11 

It has been shown that the separable coordinates can 
be characterized by the fact that the separated eigen
functions of the Laplace operator are simultaneously 
eigenfunctions of a pair of second order commuting 
operators in the enveloping algebra of the Lie algebra 
of E (3). All such pairs were classified into equivalence 
classes under E(3) and a one-to-one correspondence 
between each class and a separable coordinate system 
was established. 12 The eigenfunctions and many of their 
group theoretic properties have been studied in detail 
elsewhere. 13 

Here we shall partially extend this group theoretical 
approach to Schrodinger equations with "subgroup in
variant" potentials. We proceed to discuss the individual 
cases and summarize the situation in Table II. 

The one-dimensional invariance groups generated by 
P 3 , J 3 and J 3 +aP3 , respectively, only provide one 
operator, that can be diagonalized. Hence they only lead 
to a partial separation of variables. The diagonalization 
of a first order operator leads to an exponential depen
dence on the appropriate variable. The remaining two 
variables (see Table II) are contained in a function <I> 

satisfying a partial differential equation that can be ob
tained directly from the Schrodinger equation. 

Invariance under a two-dimensional or higher-dimen
sional group implies the complete separation of vari
ables in at least one coordinate system. Invariance un
der T(2), 0(2)181 T(l), 0(3), and E(2) does not specify the 
Hamiltonian completely. It does, however, completely 
specify the dependence of the wavefunctions on two vari
ables. The dependence on the third variable is contained 
in a function <1>, satisfying an ordinary differential equa
tion, specified in Table n. Invariance under T(3), E(2), 
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{Exponential} 

E(2)18I T(l), or E(3) specifies Hand <p(r) completely. 
The wavefunctions, etc., are given in Table II, with 
some explanations in Table III. For more details on 
eigenfunctions involving Mathieu functions, parabolic 
cylinder functions, Lame polynomials, etc., we refer 
to the literature. 14,15 

B. Spinor particles 

The equation to be considered in this case is the Pauli 
equation 

l- t~ + VCr) +A(r)u + B(r)P + Mik(r)O"iPk]<P = E<p, (45) 

in which all the functions V, Ail Bp and Mik are to be 
specified so as to correspond to the considered invari
ance group, as listed in Sec. 4. Separation of variables 
in spinor equations has not been investigated with the 
same amount of detail as in scalar ones. While we 
consider this to be a very worthwhile project, we do 
not go into it here and for each interaction only consider 
the simplest types of separated solutions. 

This time we shall proceed from the higher dimen
sional groups to the lower ones. 

1. The group E(3): We have 

[- t~ + V + a(aP)]<p = E<p, 

with V and a real constants. Requiring that 

P i<P = ki<p, 

we find 

(46) 

(47) 

(48) 

i. e., a constant spinortimes an exponential. Substitut
ing (48) into (46), we find 

and 

2. The group E(2)I8iT(1): We have 

[-t~ + V +a(aP) + ba3 + cP3 + dv3P 3 
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and again add the conditions (47), leading to separation 
in Cartesian coordinates. The wave function is again of 
the form (48); however, 

E~=R±(~+T2+Cf)1/2 (52) 

v = - {Is 'f (S2 + T2 + 02)1/211 (T + iU)}JJ., 

where 

R=tk2 + V + ck3, T=ak1 + ek2, 

s= (a + d)k3 + b, U= - ak2 + ekp 

If we replace the conditions P liJI = ktiJI by 

(53) 

(54) 

P 3iJ1 = k3iJ1, J3iJ1 = miJI, (P~+P~)iJI=K2iJ1, (55) 

we are led to cylindrical coordinates and obtain 

(

JJ. J ..... 1/2(Kp) exp{i[(m - t)4> + k3Z]}) (56) 
iJI- , 

- v J m+1/2(Kp)exp{i[(m +t)4> + k3z]} 
with 

E1•2 =t(K2 +~) + V + Ck3 

± {[(a + d)k3 + b]2 + (a2 + e2)K2Y /2, 

1 
v = (" ) «a + d)k3 + b 'f{[(a + d)k3 + b]2 

ta - e K 

3. The group T(3): We have 

(-t~ + V+AD +BP +MU"IPk)iJI=EiJI. 

(57) 

(58) 

(59) 

Adding the separation conditions (47), we obtain the 
wavefunction iJI in the form (48) with El 2' v, and JJ. 
satisfying (52) and (53). Equations (54)' defining R, S, T, 
and U are replaced by 

R=tk2+V+Bk, T=A1+MljkJ, 

(60) 

S=A3 + MaJkJ, U =-A2- M2Jkr 

4. The group E(2): The invariant Schrodinger-Pauli 
equation can in this case be written as 

{- ~~+A (COS~"l +sin ~"2) 

+B(sin~"1-cos~"2) +C"a+V 

+D (cos ~Pl + sin ~P2) +E (Sin ~Pl- cos ~P2) 

+Q~in ~PI-COS ~P2)"a}iJI=EiJI. (61) 
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Adding the conditions 
P1iJI=k1iJI, i=1,2, 

we find 

• ~t.::J e"P[ilk,. + k,y)]. 

Substituting (63) back into (61), we obtain a pair of 
coupled ordinary differential equations for JJ.(z) and 
v(z), 

[_! ~ _ i(F+J +K)!£ _ k:+k~ 
2 dz2 dz 2 

+exp(- i2z/ a)[G(k2 - ik1 ) +H(k1 +ik2 )] 

+J(k1 - ik2) + L(k1 + ik2)} v(z) = 0, 

[_ ! ~ _ i(F _ J _ K) !£ _ k~ + k~ 
2 dz2 dz 2 

- C + V - E + (D - P) (k1 cos ~ + k2 sin ~) 

+ ei26/a[G(k2 + ik1) + H(k1 - ik2)] +J(k1 + ik2) 

+ L(k1 - ik2)} JJ.(z)=O. 

(62) 

(63) 

(64) 

Judging from the spinless case, it should be possible 
to express their solutions in terms of a generalization 
of Mathieu functions, but we have not explored this pos
sibility. It is a simple matter to decouple the equations, 
at the price of introducing third derivatives of JJ.(z) 
and v(z). 

5. The group E(2): We have 

(- i~ + V(z) +a(z)(uP) + b(Z)a3 + c(z)P3 

+ d(Z)aaP3 + e(z){" IP2 - "2Pl)]!/! = E!/!. (65) 

Adding the conditions (62), we obtain a solution of the 
form (63), where JJ. and v satisfy the coupled equations 

(_ ! ~ _ i(a + c + d) !£ - k~ +2 ~ + V + b - E) JJ. (z) 
2 dz dz 

+ lk1 (a + ie) + k2 (e - ia)v(z)] =0, 

(
- ~ ~ 2 + i( - a + c + d) !£ + V - b - E) v (z) 

2 dz dz 

(66) 

+ lkl (a - ie) + k2(a + ie)]JJ.(z) = O. 
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Since a, ... , e are arbitrary functions of z, we can 
proceed no further. We could equally well separate in 
cylindrical or possibly other coordinates. 

6. The group 0(3): We have 

[- ~~ + V(r) + a(r)(uP) + b(r)(ur) + c(r)(rP) + d(r)(uL)]1j! 

=EIj!. 
(67) 

In addition we require 

J21j! =J(J + 1)1j!, J 31j! =MIj!. (68) 

The solution of (68) can be written in the form 

= Z Cl'J+.(r) L- (J+K ~ M-iJ.IJ.IJM)YJ+.,M_I'(8,cf»XI'/2 
••• 1/2 1'=.1/2 

;: L Cl' J+.(r)Wf:/(8, cf», (69) 
••• 1/2 

where (Zll2mlm21 LM) denotes an 0(3) Clebsch-Gordan 
coefficient,16 Y JM(8, cf» a spherical harmonic, X 1'/2 a 
constant two-component spinor, and Cl' Jol/2(r) are arbi
trary functions of r. The following relations are conse
quences of elementary angular momentum theory l6,17: 

(UL)W~;; = 2K(J + ~ - 2K)W~M' 

(70) 

Substituting (69) into (67) and using (70), we obtain 
two coupled equations for a Jol/2(r): 

{_ ! [£ + (~ _ ire(r») 1:..- + (J + 1/2)(J + 3/2) ] 
2 dr r dr r 

+V(r)-(J+%)d(r)-E} Cl'J+l/2(r) 

+ ( - ia(r) :r - ia(r) + b(r») a J_l/2(r) =0, 

{ 
1 [~ (2 . (») d (J - 1/2)(J + 1/2)J 

- 2" dr + r - zre r dr + r 

+ V(r) + (J - ~)d(r) - E}Q! J_l/2(r) 

+ (-ia(r) 1r -ia(r)+b(r»)aJ+1/2(r)=0. (71) 

7. The group 0(2)~T(1): The Pauli equation in this 
case is 
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(72) 

Adding the conditions 

J 31j!=(-i a°cf> +~3)Ij!=MIj!, P 31j!=k31j!, 

we find 

(73) 

(

iJ.(p)expli(M -1/2)cf>]exp(ik3Z~ (74) 

Ij! = v(p)expli(M + 1/2)] exp(ik3z) ). 

Substituting (74) into (72), we obtain a pair of coupled 
ordinary second order differential equations for iJ.(p) 
and v(p) . 

8. The group T(2): We have 

l- ~~ + V(z) - E +A(z)u +B(z)P + Mjk(z)ujPk]1j! =0. 
(75) 

Adding the conditions 

Pilj!=kilj!, i=1,2 

we find 

(76) 

(
iJ.(Z») 

Ij! = v(z) expli(k1x + k2y)]· 

Substituting (77) in (75), we obtain a pair of ordinary 
coupled differential equations for iJ.(z) and v(z). 

9. One-dimensional groups T(1), 0(2), and 0(2): 

(77) 

The Hamiltonians are given in Sec. 4. The diagonaliza
tion of the generator P 3, J 3, or J 3 +aP 3 leads to a partial 
separation of variables, as in the case of scalar 
particles. 

I/! = (~(~::i) exp(ik3z), (78) 

J 31/! =MI/! implies 

1/!=(iJ.(p, z)expli(M -1/2) cf>]) 

~(p, z) exp[i(M + 1/2) cf>] (79) 

and (J3 + aP3)1/! = wI/! implies (in helical coordinates) 

(

iJ.(P, v)expli(M -1/2)U]) 

I/!= v(p,v)expli(M+l/2)u] . (80) 

The coupled partial differential equations for the func
tions iJ. and v can be obtained in each case by substitut
ing back into the appropriate Pauli equation. 

To summarize: While the solutions are considerably 
more cumbersome for spinor particles than for scalar 
ones, the over-all picture is the same. Thus, invari
ance under a one-dimensional group leads to a partial 
separation of variables. Invariance under higher-di
mensional group leads to a complete separation of 
variables and te, the explicit form of the dependence on 
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at least two of the variables. Invariance under E(2), 
T(3), E(2)::9 T(3), or E(3) in principle completely speci
fies the wavefunctions. 

If we wish to proceed further with a study of the 
wave functions and energy levels we must specify the 
problem further, i. e., impose appropriate boundary 
conditions, specify the arbitrary functions in the poten
tials, etc. 

6. CONCLUSIONS 

The main thesis of this article is that the complete 
knowledge of the subgroup structure of the invariance 
group of a physical system makes possible a systematic 
study of symmetry breaking for this system. In particu
lar, it makes it possible to generate all related systems, 
the symmetry group of which is a subgroup of the origin
al group. Invariance with respect to the subgroup can 
then be used to study some or all of the properties of the 
new more general problem. 

In this article we have demonstrated the validity of 
the above thesis in the case of the nonrelativistic quan
tum mechanics of a scalar or spinor particle. In parti
cular, in the considered case there is actually a one
to-one correspondence between subgroups of the sym
metry group E(3) of the free Schrodinger (or Pauli) 
equation and symmetry breaking interactions of the 
considered type. Let us mention that if we had con
sidered only a spinless particle in a scalar potential 
V(r), the relation between potentials and subgroups 
would not have been one-to-one. 

We have restricted ourselves, on one hand, to non
relativistic stationary (time independent) quantum 
mechanics of a single particle with spin 0 or ~ in an 
external field. subject to a quite specific ansatz (namely 
that the interaction is linear in the momentum). On the 
other hand, we have restricted ourselves to explicit 
symmetry breaking, i. e., modifications of the Hamil
tonian, without considering the possibility of "sponta
neous" symmetry breaking. 

Clearly all the above restrictions can be abandoned 
and the approach of this article applied to more general 
problems, Trivial (conceptually) generalizations would 
be to consider particles of higher spin, possibly of 
arbitrary spin and a more general ansatz, concerning 
the Hamiltonian. Let us just mention several other ex
tensions of the present work, that are currently being 
considered, as well as related work by other groups. 

1. Symmetries of the time-dependent Schrodinger 
equation. This equation for a free particle is known to 
be invariant under a considerably larger group than the 
Euclidean one, namely the so-called Schrodinger group 
5n (n is the number of spatial dimensions), containing 
the Galilei group as a subgroup. 18 Many properties 
of this group have been studied. 18-20 In particular, in 
the case of one space dimension all subgroups of 51 
have been found and the problem of finding the inter
actions, reducing the symmetry from 51 to each of its 
subgroups has been solved. 19 The ansatz was general 
enough to include nonlinear interactions and indeed 
many nonlinear generaliZations of the Schrodinger 
equation were obtained and at least partially solved. 
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In this connection we would like to mention that Lie 
theory provides powerful tools for studying nonlinear 
equations. Similar work for the Schrodinger groups 
52 and 53 is in progress. 

2. The complete symmetry group for a given Hamil
tonian. The invariance group of a Hamiltonian is not 
necessarily a subgroup of the invariance group of the 
free Hamiltonian. Indeed, some of the Hamiltonians 
found in this article may in general or in special cases 
have larger symmetry groups. The additional gener
ators will not be linear combinations of Pi and J j • 

3. Groups of canonical transformations. The sym
metry group considered in this article is a purely 
geometrical one reflecting properties of space-time 
rather than any special dynamics. This reflects itself 
in the fact that all the group generators are first order 
linear operators. Dynamical invariance groups, corre
sponding to general canonical transformations, like, 
e.g., 0(4) for the hydrogen atom or SU(3) for the har
monic oscillator would make their appearance if we 
considered generators that are second or higher order 
operators. 12,21 The problem of symmetry breaking for 
groups of canonical transformations is in itself of 
interest, e. g., in connection with a hydrogen type atom 
in an external field22 and more generally in connection 
with interactions removing accidental degeneracy. 23,24 

In general the consideration of higher orders operators 
as group generators may lead away from Lie groups and 
to the use of, e. g., Backlund transformations. 25 

4. Explicit symmetry breaking in relativistic theory. 
One of the basic assumptions of relativistic quantum 
theory is that the state vectors of a free (noninteracting) 
elementary physical system transforms according to an 
irreducible unitary representation of the Poincare 
group. 26 Alternatively and equivalently, the state vector 
obeys the Bargmann-Wigner equations. 27 Now consider 
a particle in a classical external field-in itself a prob
lem of considerable interest. 28 The external field will 
violate POincare invariance and depending on its own 
symmetry reduce the invariance group of the system 
to a subgroup of the Poincare group, Thus, similarly 
as in the nonrelativistic case, a classification of the 
subgroups of the Poincare group will provide us wi th a 
classification of symmetry breaking external fields. 
The representation theory of the corresponding subgroup 
will then provide us with a handle for studying the 
corresponding relativistic equation for a particle in a 
field. 

Related problems have been treated in the literature. 
The subgroups of the Poincare group have been classi
fied in Ref. 2 and independently by Bacry et al. 29 Some 
of the subgroups have been used in a theoretical analy
sis of elementary particles in an external electro
magnetic field30 and of electromagnetic fields with cer
tain symmetries. 31 An interesting series of papers has 
been devoted to symmetries of electromagnetic fields 
making use of certain types of discrete subgroups of the 
Poincare group. 32 

5. Spontaneous symmetry breaking. 33-37 This is a 
different mechanism for breaking a given symmetry in 
that the Lagrangian (or in our case the Hamiltonian) 
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of the system remains fully invariant with respect to 
the original symmetry group. The symmetry is broken 
by the fact that the vacuum state is not invariant under 
the group, but only under a certain subgroup. The rele
vance of a subgroup classification in this case is ob
vious. Spontaneous symmetry breaking plays an impor
tant role in particle physics and also in solid state 
theory and other fields. As a model of this type of 
symmetry breaking we intend to perform a systematic 
study of various differential equations of physics with 
nontrivial invariance groups. To these equations we 
shall add symmetry breaking boundary conditions and 
see how a classification of subgroups leads to a classi
fication of boundary conditions. The heat equation (the 
classical diffusion equation) is presently under consider
ation from this point of view-it is a convenient candi
date, since its symmetry group38,39 is isomorphic to the 
Schrodinger group, the subgroups of which we already 
know. 19 
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Any skew-symmetric tensor field on a four-dimensional pseudo-Riemannian space V4 admits a 
representation in terms of Clebsch potentials and their derivatives. Since the usual 4 - potential 
representation of the electromagnetic field tensor of classical electrodynamics breaks down in the presence 
of magnetic charges. these Clebsch potentials are treated as the field variables of an invariant variational 
principle. The resulting Euler-Lagrange equations determine not only a useful representation of the 
electromagnetic field tensor (in the presence of magnetic charges). but also give rise to Maxwell-type field 
equations. The associated Lagrange density defines a unique energy-momentum tensor entirely on the 
basis of invariance consideration. A generalized variational principle is postulated. whose Euler-Lagrange 
equations specify the behavior of both the electromagnetic field tensor and the metric tensor of V4• These 
are generalized Einstein-Maxwell equations. For the case of a spherically symmetric line-element and a 
static electromagnetic field an explicit solution of these equations is found which generalizes the well 
known Reissner-Nordstriim metric. In the course of the construction of this solution the magnetic charge 
of the central mass appears naturally as a constant of integration of the associated differential equations for 
the Clebsch potentials. The equations of motion of a test particle in an external electromagnetic field are 
also deduced from a variational principle; subject to fairly weak restrictions. the expected generalization of 
the classical Lorentz force emerges from this analysis. 

I. INTRODUCTION 

The well-known derivation of the classical Maxwell 
equations of electromagnetic theory from an invariant 
variational principle depends crucially upon the fact that 
the electromagnetic field tensor can be described as the 
curl of a 4-potential whose components are, in fact, 
the field variables in the associated Lagrange density. 
However, when the inclusion of magnetic charges is 
allowed in the theory, as, for instance, in the recent 
work of Schwinger, 1 the existence of a 4-potential in its 
usual form is precluded by virtue of the fact that the 
divergence of the magnetic field need not vanish. While 
most of the literature dealing with the possible existence 
of magnetic charges is concerned primarily with quantun 
mechanical consequences thereof, it is the obj ective of 
the present paper to describe, against a purely clas
sical background, the systematic construction of suit
able generalized 4-potentials, irrespective of the ex
istence or otherwise of magnetic and electric charges. 

The primary tool used for this purpose is a theorem 
which represents a generalization of the Clebsch trans
formations of hydrodynamics, 2 according to which an 
arbitrary differentiable vector field on a three-dim en
sional Euclidean space may be expressed as the sum of 
a gradient and a scalar multiple of another gradient. 
This generalization3 entails the representation on an n
dimensional differentiable manifold (11 -, 3) of any totally 
skew-symmetric geometric object field endowed with 
n - 2 indices, this representation being such that, when 
n = 3, it reduces to that of Clebsch. When n = 4, the 
theorem give rise to the representation of an arbitrary 
skew-symmetric geometric object field in terms of the 
so-called Clebsch potentials and their first derivatives. 
In the present paper, therefore, it is assumed that any 
electromagnetic field on a four-dimensional pseut~o
Riemannian space-time V4 is represented by a skew
symmetric type (0,2) tensor field Fhi and that the prop
erties of this field are determined entirely by a single 

invariant variational principle whose Lagrangian depends 
solely on F

hj
, the metric tensor {{hi of V4 , and possibly 

on given electric and magnetic charge distributions. In 
this variational principle, however, the Clebsch po
tentials of the representation of Fhi play the role which 
is usually assumed by the 4-potentials of classical 
electromagnetic theory. 

An analysis of the resulting Euler-Lagrange equations 
indicates that effectively only two sets of Clebsch po
tentials survive in the representation of F hi . Moreover, 
for the case of a flat V4 , the field equations satisfied 
by Fhi are precisely the extended Maxwell equations 
which had been postulated previously, 1 while the given 
Lagrangian L defines a unique energy-momentum tensor 
density whose derivation is based solely on invariance 
properties of L. 

This state of affairs immediately suggests a general
ization of the entire theory in terms of a single invariant 
variational principle from which the field equations for 
both of the tensor fields {{hi and Fhi are to be derived: 
In fact, it is found that thus a corresponding extension 
of the Einstein-Maxwell equations is obtained. An ex
plicit solution of these equations may be constructed for 
the case of a spherically symmetric line element and 
a static electromagnetic field in vacuo; the integration 
of the associated ordinary differential equations for the 
Clebsch potentials appears to predict the existence of 
electric as well as magnetic monopoles (unless certain 
constants of integration are arbitrarily set equal to 
zero). 

Because of the existence of two sets of Clebsch po
tentials, two distinct types of duality rotations are en
countered. These may be used to construct a Lagrangian 
of a single integral variational problem for the de
termination of the equations of motion of a test particle 
in a combined gravitational and electromagnetic field. 
In this connection some difficulties are encountered in 
the sense that the existence of the aforementioned 
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Lagragian depends on the validity of certain relation
ships between the two sets of potentials. However, as 
a result of the field equations, these relationships are 
satisfied under fairly general conditions, particularly 
in the vacuum, and the resulting equations of motion 
reduce, in the non relativistic limit, precisely to those 
postulated by Schwinger, 4 presumably on the grounds of 
invariance under duality rotations, 

It should be reiterated that the entire analySiS pres
ented below is of a purely classical nature, that is, 
nonquantum mechanical. 

II. THE CLEBSCH REPRESENTATION OF THE 
ELECTROMAGNETIC FIELD TENSOR 

Let Xi denote the local coordinates 5 of a four-dimen
sional differentiable manifold V4 0 As shown elsewhere, 3 

any class C2 (that is, twice continuously differentiable) 
skew-symmetric geometric object field Xh/Xk) admits 
a local Clebsch representation of the form 

(2,1) 

in which the so-called Clebsch potentials are appropri
ate functions of the positional coordinates xk. If, in 
particular, the given field XhJ is a type (0,2) tensor 
field, the potentials P,Q,R are scalars, while l/!/ is a 
convariant vector fietd. These potentials are not unique
ly determ ined by Xhi ; they may, in fact, be subj ected to 
various kinds of (Clebsch) gauge transformations3 which 
leave Xhi unchanged. 

In order to introduce a tensorial dual of a Skew-sym
metric tensor field Xhi it is necessary that we endow V4 

with a prescribed Riemannian (or pseudo-Riemannian) 
metric tensor gh/Xk ), of which it is assumed that it is 
symmetric, of class C2, and such that g= I det(ghj) I *0. 
The dual of XhJ is defined to be 

(2.2) 

According to (201) the corresponding Clebsch repre
sentation of X*hj is given by 

(2.3) 

Since any skew-symmetric tensor field may be regarded 
as the dual of another, it follows that (2.2) represents 
the prototype of an equally acceptable Clebsch repre
sentation of an arbitrary skew-symmetric tensor field. 

Let us now assume that a given electromagnetic field 
is represented by a class C2 skew-symmetric tensor 
field Fhi (Xk) on V4 • Thus the most general Clebsch rep
resentation of F hj is given by a combination of the rep
resentations (2.1) and (2.2), namely 

Fhi =-fhi + ibhi , 

where 

and 

bhj , =-ghlgJkb'k , 

with 
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(2.4) 

(205) 

(2.6) 

(2.7) 

This construction does not entail any restriction on the 
field FhJ at the present stage. However, the properties 
of the various Clebsch potentials which occur in (2.5) 
and (2.7) are to be determined by means of a Single 
variational principle, in which each potential will give 
rise to an Euler-Lagrange equation. Thus the inclusion 
of a possibly superfluous potential will be compensated 
by the constraints implied by the corresponding Euler
Lagrange equation. 

The presence of electric and magnetic charge dis
tributions which give rise to Fhi is represented by elec
tric and magnetic current density vectors, to be denoted 
by JIz and Sk respectively. It is now postulated that the 
behavior of the field Fhj is specified by the Euler
Lagrange equations resulting from an invariant varia
tional principle whose Lagrange density is given by 

L = ~.;g Fhj Fhi -i};hJh + tPhSh , (208) 

where l/!h' tPh are the vector fields which occur in the 
representations (2,5) and (2.7) and where 

(2.9) 

it being understood that the field variables consist of all 
Clebsch potentials of the representation (204)- (2 0 7), 

In order to derive the Euler-Lagrange equations 
corresponding to (2,8), we observe that, for a typical 
potential, temporarily denoted by z, we have, by virtue 
of (2.7) and the symmetry of ghP 

-.Z..(l-r;;FhiF )=IF;;FhJ aFhJ=l..j-F aFhJ 
(Jz • g hi 2 g az 2 g hi az 

Thus, for instance, it follows from (2,8), (2.4), and 
(2.7) that 

aL 1 ~ aFlk 1 - ob'" 
-- = 2vg F,. ~ =2ivg F'k ~ o <Ph 0} 'Ph.) 'Ph,) 

where, in the last step, we have used (2.2). Hence the 
Euler-Lagrange tensor density corresponding to the 
potential <Ph is given by 

E (L)= _0_ (~) _ ~ = ~ (V;; F*ih) _Sh 
<I> h a Xi '1 tPh • j a tPh a x)"" . 

However, since .fi F*ih is a skew-symmetric tensor 
dens ity,6 

-F;; F*jhr
' h Ij! 

in which all terms involving the Christoffel symbols drop 
out in view of the symmetry of the latter. Accordingly, 
the Euler-Lagrange equations corresponding to tPk may 
be expressed as 

E<I> (L)=(f.!fF*ii<)lj-Sk=:O. 
k 

(2.10) 

By means of the same procedure the remaining set of 
Euler-Lagrange equations is found to assume the fol
lowing form: 

Hanno Rund 85 



                                                                                                                                    

Ep (L) == (,fji RF jkQ,k)li = 0, 

EQ(L) ==- ('Ig RFikP,k)lj =0, 

(2.11) 

(2,12) 

(2.13) 

(2,15) 

(2.17) 

The set (2.10)-(2.17) represents the field equations 
satisfied by the Clebsch potentials, In order to determ ine 
the roles played by the potentials P, Q, R, we note that 
(2.11) and (2.12) yield 

+ 'iJi FJk(RQ.,)U' 

and hence, since (Q,k)IJ is symmetric in k and j, while 
Fik is skew-symm etric in these indices, 

vg FlkR,jQ,k=RJ"Q,k' (2.18) 

Similarly, the combination of (2.11) with (2.13) yields 

vgpikR,jP,k=RJ"P.k . (2.19) 

The constraints imposed on P,Q,R are determined 
entirely by (2,14), (2,18). and (2.19L The last two 
equations may be written in a more useful form if we 
introduce a vector field In defined by 

I. =4~-1/2(FXF)-1,1'F*h' (2.20) 
J • J 

where we have used the notation7 

(FXF)=FJkF;k' 

Because of the well-known identity 

pikF7h =: ;6~(FxF). 

we may write (2.20) as 

(2.21) 

(2.22) 

Jk=~fiFjklj' (2.23) 

When this is substituted in (2,18) and (2,19), the latter 
reduce to the form 

,-;;FikR () =0 ';"'FjkRP =0, ,...., i \J(.R • ,..., J-k 
(2.24) 

where, for the sake of brevity, we have put 
-
RI =R,j -RIj • (2.25) 

Now, Eq. (2.14) is obviously satisfied if P,i and Q,} 

are proportional, that is. if there exist scalars >c, v, 
not both zero, such that 

>cP,! = vQ,I' (2.26) 

However, let us suppose to the contrary that P,I' Q ,j 
are linearly independent, in which case they span a 
two-dimensional plane H2 in the dual tangent spaces 
T.(p) of V. at each point p of V 4 0 From (2.14) and the 
identity Fjk P P = ° it then follows that the vector 

,j ,k 
Flkp is normal to 11 2 ; the same inference may be 
draw'~ similarly for F}kQ 0" while (2.24) implies that 
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FJkRI is also norm~J to lI2' Thus the three vectors 
pik p'}' FJkQ ,j' pi"RJ are contained in the two-dimen
sional orthogonal complement of 0z, which implies their 
linear dependence. Accordingly there exist three 
scalars a, b, c, not all zero, such that 

aP .+bQJ+cRJ==O, (2.27) " , 
If c = 0, this is identical with (2,26), and accordingly 
we shall suppose that c*O; for the same reason we may 
also suppose that Q'J' RJ are nonparallel and hence 
span H2 , Therefore, the orthogonality of FJk Po} to 02 

may be expressed as 

(2.28) 

where j.J. is some nonvanishing vector field, [In fact, 
Eq. (2,£8) is the solution of (2,14) ang the second mem
ber of (2,24).] We now substitute for Rl from (2.27) in 
(2.28), obtaining 

V'/{ pk P,h == - aC I j.J.mEmkhlQ,hP,I' 

This is multiplied by F7k' the identity (2.22) being taken 
into account, which yields 

l VK (FXF)P,) 

== - ac- I j.J.mEmkhl F7kQ ,h P ,l 

== - h1C-1 ..f.fi 11m (07 Fhl + 6~Flm + 6~pmh)Q ,h P ,I' 

or, if we use (2.14) once more, 

[HFX F) + iac- 1 Fmh J.LmQ. h ]p,} = iac·1(Fmh J.LmP,h)Q,j· 

(2,29) 

Here it should be noted that Eq. (2.28) implies that the 
coefficient of Q . on the right-hand side of (2.29) vanish-

,J 

es identically, which gives rise to (2.26) with v==O, 
Accordingly (2.29) implies (2.26) once more, which is 
therefore an inevitable consequence of (2.14) and (2.24). 

Moreover. since the structures of Eqs. (2.10), (2.15), 
(2.16). (2.17) are identical with those of (2.11)-(2.14), 
an analogous analysis applied to the former set yields 
the conclusion that there exist scalars a, T, not both 
zero, such that 

aU,} == TV,}, (2.30) 

The substitution of (2.26), (2.30) in (2.5), (2.7), re
spectively, reduces these representations to the Simple 
forms g 

Il} = .!;.-1/2Eh} lk rf>k,1 . 

(2.31) 

(2.32) 

Our conclusions may now be summarized as follows: 
The field equations associated with the single il1!'ariant 
variational prillciJ)/e specified b .... the La~ral1~iaJl (2.8) 
u.niquely determine the structure of the Clebsch repre
sentatioll (2.4) of lite electromagnetic field tel1sor Flli 
as gil'en In' (2.31) alld (2.32); furthermore, the (elisor 
Phi sillisfies the extended 1\11 axwell equations 

(2.33) 

Hanno Rund 86 



                                                                                                                                    

(2.34) 

where J1', Sh denote the electric and magnetic current 
densities respectively. 

In connection with these field equations the following 
observations may be of Some relevance. From (2.32) it 
follows that 

But 

where Rpk/i denotes the curvature tensor of V4 , while 

fhilk RpklJ = 0 

identically by virtue of the cyclic identities satisfied by 
the curvature tensor. Thus 

ifi Ii =0 

identically. Also, it follows from (2.31) that 

j*hi = ig-1/ 2f hJlk¢kll' 

so that, as before, 

(2.35) 

j*hi'i =0 (2.36) 

identically. With the aid of (2.4) the field equations 
(2.33) and (2.34) may therefore be expressed in the 
form 

(2.37) 

(2.38) 

From the form of the representations (2.31) and (2.32) 
it is evident that (2.37) and (2.38) involve the fields 
¢h and ct>h separately. It would appear, therefore, that 
the electric and magnetic current densities give rise 
independently to the vector potentials 1iJh and ct>h respec
tively. Also, since the covariant derivatives on the 
left-hand sides of (2.37) and (2.38) may be replaced by 
partial derivatives, these equations imply the con
servation laws 

(2.39) 

The representations (2.31) and (2.32) clearly indicate 
that J"J' bhJ , and hence FhJ , are invariant under ordinary 
gauge transform ations. However, FhJ is invariant under 
a far more general gauge transformation: namely 

(2.40) 

where OJ' XJ are arbitrary solutions of the system of 
partial differential equations 

(2.41 ) 

Ordinary gauge transformations are obviously special 
cases of (2.40), 

In conclusion, let us briefly glance at the explicit 
form of the field equations (2,33) and (2,34) in flat 
space-time. Relative to a coordinate system in which 
X4 = iet, where c is the velocity of light in vacuo, the 
electromagnetic field vectors, E, H are represented as 
USual by9 
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(2.42) 

where fa&!' is the three-dimensional permutation symbol. 
Equivalently, 

(2.43) 

If the 4-vector representation of Jh, Sh is taken to be 

(2.44) 

where p, a respectively denote the electric and magnetic 
charge densities, it is easily verified with the aid of 
(2.42) and (2.43) that (2.33) is equivalent to 

V'E=p VXH-! ~=!j (2.45) , e at c' 
while (2.34) reduces to 

1 aH 1 
-vxE---=-s. 

c at c 
(2.46) 

These field equations are identical with those postulated 
by Schwinger. 1 Moreover, when (2.42) is written out in 
full in terms of (2.4), (2.31), and (2.32), in which we 
put If! = (</!l' </!2' </!3)' ct> = (ct>l' ct>2' ct>3)' together with 

¢4=iV, ct>4=iU, (2.47) 

it is found that 

1 alf! E = - V V - - - - V xct> 
c at ' 

(2.48) 

and 

1 oct> H=vxlj;-vu-- -, 
e of 

(2.49 ) 

whose formal symmetry is quite striking. In fact, these 
representations are equivalent to the Helmholtz de
compositions (according to which any vector on a three
dimensional Euclidean space can be expressed as the 
sum of a gradient and a curl) of the vectors 

E + ! alj; and H + ! ~ 
e at e at 

respectively. 

III. THE ENERGY-MOMENTUM TENSOR 

For any invariant variational principle based on a 
Lagrangian density whose functional dependence is given 
by 

(3,1) 

there is a simple prescription for the determination of 
a unique, symmetric type (2.0) tensor density, whose 
divergence vaniShes whenever the field equations are 
satisfied. More precisely, writing 

h · aL . ( ) A J= - =AJh 3.2 
aghi ' 

it may be shown, merely by virtue of the fact that L is 
a scalar density, thatlO 

. [OL aL 2AhJ = Li'i - glJ .- </! + -- (J' - J' ) 
v?jJh I O~;h'k I,k k,l 

aL aL ] 
+ ~ ct>1 + ~(ct>I'k - ct>k,z) , (3.3) 

'+'h '+'h.k 
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the divergence of which is a linear combination of the 
Euler-Lagrange expressions associated with L. 

In the case of the Lagrangian 

(3.4) 

where Flk is specified by (2.4), (2,31), and (2.32), we 
have, as before, 

with 

fkl=lJ!/lk-lJ!kll' ibtk=<P/lk-<Pkll> 

so that (3.3) assumes the form 

2Ahi =fi [g I J(Filkfk I + iF*hkbTk) + HF. F)ghi], 

where we have introduced the notation 

(F· F) = Flk F lk , 

(3.5) 

(3.6) 

(3.7) 

The field equations corresponding to (3.4) are simply 

(3.8) 

as is immediately evident from (2.33) and (2.34); ac
cording to the general theory Ahi Ii = 0 whenver (3.8) is 
satisfied, which, because of (3.6), implies that 

T~Ii=O, (3.9) 

where we have put 

c'2T~ = - 2A~ = fi [Fil (lJ!/ih - ?Phil) 

(3.10) 

We shall regard (3.10) as the energy-momentum ten
sor density of the electromagnetic field. 

Since (3.9) is crucial to the entire development, we 
shall briefly indicate how this assertion may be verified 
from first principles. A simple calculation yields 

t(F. F)lh =: Fil?pllilh + F*iI <PIli Ih' (3.11) 

and thus, if (3.8) is taken into account. it follows di
rectly from (3.10) that 

c2T~1J = Ii Fi/(?p/lhli -lJ!hllli -lJ!llilh) 

+fgF*JI(<Pllhlj - <Phl/l} - <Pllil h)' 

But the term involving Fil may be written as 

fg FiI[(~llhIJ - ~llilh) - ~(?Phl/lj - ?,bhIJIl)] 

= ~Ii Fil Kkm?pk (R lmhi - R imhl - Rhm1i ), 

(3.12) 

which is zero by virtue of cyclic identity satisfied by the 
curvature tensor. Similarly, the term involving F*i I 
in (3,12) may be shown to vanish, which establishes 
(3,9). 

In order to facilitate the treatment of the algebraic 
properties of the energy-momentum tensor density 
(3.10), it is appropriate to use matrix instead of com
ponent notation. Let uS write 
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and SimilarLy for F*, f, b, etc. In accordance with 
(3.7) and (2,21) we shall also put 

(j'b)=-flkbkl=-f\bkl=-tr{jb)=(b,j), (3.13) 

(JX b) = - f*lkbkl = - f*'kbk, = - tr{J*b) = (b xf). (3.14) 

Because of (2.4), we have F=f+ib, so that 

(F. F) = (J. j) - (b· b) + 2i(J. b), 

(FxF) = {fx f} - (b x b) + 2i{fx bl. 

(3 .15) 

(3.16) 

By means of a direct calculation the following identities 
may be verified: 

f*b+b*f=-~{fxb)I, jb* +bf*=-~{fxb)I, (3.17) 

f*b*-bf=~(j·b)I, fb-b*j*=-t{f'b)I, (3.18) 

where I denotes the unit (4 x 4) matrix. In particular, 
putting b=f in (3.17) and (3.18), one obtains 

(3.19) 

It should be observed that the identities (3.17)-(3.19) 
hold for any pair of skew-symmetric matrices f jh , bjh • 

With the aid of (3.18) and (3.15) we may now express 
(3.10) in the form 

=: - Ff + iF* b* - t(F . F)I 

== - f2 - (b*)2 + i{j * b - b/! 

- H{f' j) - (b' b) + 2i{f' b)]I 

== - f2 - (b*)2 - H{f' f) - (b' b)]I. (3.20) 

Alternatively, if (3.19) is applied, it is seen that 

- c2g-1/ 2T = ur + (f*)2 + b2 + (b*)2]. (3.21) 

Since 

tr(P) = - {f. f) = {f* ·f*)= - tr(f*)2, 

it follows directly from (3.21) that 

tr(T) = O. (3.22) 

It should be noted, however, that the trace-free char
acter of T is merely a result of its algebraic structure, 
and does not depend on the specific nature of the tensors 
fnJ and bhJ • 

In classical electrodynamics the square of the ener
gy-momentum tensor is a scalar multiple of the unit 
matrix, a phenomenon which is exploited, for instance, 
in the" already unified field theory" of Rainich. 11 

Accordingly we shall now evaluate y2 from (3.21) in 
order to determine the circull'1stances under which this 
property is preserved for the generaL case under dis
cussion, To this end we note that, because of (3.19), 

while 

[j2 + (f*)2)[b2 + (b*)2) = {f' f)b 2 + (b' b)f2 + 4f2b2 

+ Hi' j)(b /)1. 
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Thus, (3.21) gives 

4g-1 c4 T 2 = -H {j. f)2 + (b' b)2 + {j Xf)2 

+ (b X b)2 + 2{j. j)(b' b)]l + R(l)' 

where 

R U ) = 2{j. f)b 2 + 2(b· b)f2 + 4{f2b2 + bZf2) 

=4[j2(b*)2 + b2{f*)2], 

in which we have applied (3.9) once more. But by 
ll1eans of (3.17) it is readily established that 

f2(b*)2 + b2{f*)2 = Hfx b)21 - Jbf*b* - bJb*f*, 

so that 

R U ) = (j x b)21 + R(2» 

where 

- R(2) = 4[Jbf* b* - bfb* f* J. 
Now, let us introduce the cOll1mutator 

A =fb - bf, 

so that, by (3.18), 

f* b* - b* f* = - A • 

With the aid of (3.19) we ll1ay then write 

fbf*b* =yt {j Xj)(b x b)l+ V*b*, 

bfb*f* = h (f x f)(b x b)J - Ab*f*, 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

and hence, with the use of (3.27), it is seen that (3.25) 
becomes 

R(2) = - t{f Xj)(b x b)J + 4A z. 

This is substituted in (3.24), by means of which (3.23) 
can be expressed as 

16g-1 c4T 2 ={[ {j. IJ - (b· b)Jz + [{f xIJ - (b x b»)2 

+ 4{f 0 j)(b' b) + 4{f x b)2)-I+ 16Az. 

Because of (3015) and (3.16) this is equivalent to 

16g-1 c4 T 2 ={(F. F)2 + (FxF)2 - 4i[(Fo F){j' b) 

+ (FXF){jxb)] 

+ 4 (j 0 j) (b. b) - 4 (J . b)2)- I + 16A 2 • 

(3.28) 

(3.29) 

Clearly T Z is a scalar ll1ultiple of the unit matrix if and 
only if 

(3030) 

where K is an arbitrary scalar. This condition is equiv
alent to the requirement that 

(3031) 

where 

(3032) 

In order to analyze the implications of (3031) complete
ly, we have to evaluate A * explicitly. From (3.26) it 
follows that 

(3.33) 
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ig-1 / Z€ IkhJ !"m 
= - ig-l/zE'khJ(hgl/2Ehmr.f*r.) 

so that (3.33) reduces to 

or 

A* =f*b - bf*. 

Because of (3.17) this is equivalent to 

A * = f b* - b* f, 

Accordingly the condition (3.31) assumes the form 

(jb - bf) = lJ{j*b - bf*) = lJ(fb* - b*f), 

so that 

(j - lJf*)b = b(b - lJf*), feb - lJb*) = (b - /lb*)f. 

(3.34) 

(3.35) 

However, a few simple manipulations indicate that this 
is consistent with (3.17) and (3.18) if and only if lJa =-1 
and 

p{f± if*) = q(b ± ib*), (3.36) 

where p and q are arbitrary nonzero scalars. Converse
ly, it is easily seen with the aid of (3.34) and (3035) 
that (3.36) implies (3.30) with 

(3.37) 

It is therefore concluded that the square of the energ\'
momentum tensor density (3.10) is a scalar multiPle'of 
Ihe unit matrix if and only iff and b salisjv the condition 
(3.36), in which case the scalar K is related to the com
mutator A = Jb - bf according to (3.37). 

IV. EFFECTS OF ELECTRIC AND MAGNETIC 
CHARGES ON GRAVITATIONAL FIELDS 

Up to this stage it had been assumed that the metric 
tensor of the underlying manifold V4 assumes preassign
ed values. It is more instructive, however, to consider 
the more general case when the field equations to be 
satisfied by both the tensor fieldS ghJ and Fh are de
term ined by a single invariant variational p:inciple. To 
this end we shall consider a Lagrangian of the form 

(4.1) 

where L is given by (2.8), while R is the curvature 
scalar R = gihRih , defined in terms of the Ricci tensor 
Rih =R/hk , and a is SOll1e constant to be specified 
presently. 

The Euler-Lagrange tensor density corresponding to 
the metric tensor field in (4.1) is given by - --
Ehi(L)=_ -+- ( aL ) + _a_(~) _ ~ 

ax ax" oghi,l,m ox' ~ghj,' aghj 

(4.2) 

Hanno Rund 89 



                                                                                                                                    

in terms of the notation (3.2) applied to (2.8) [it being 
observed that AhJ assumes precisely the same form for 
(2.8) and (3.4)]. It is well known that12 

EhJ (a!.i R) = a Ii [RhJ - ~ghi R], (4.3) 

and thus it follows from (4.2) and (3.10) that the cor
responding Euler-Lagrange equations are 

aR[R~-~6~R]+~c2T~=0. (4.4) 

However, according to (3.22). we have T~ = 0, so that 
a contraction Over j and h in (4.4) yields R = O. Thus, 
putting a= (167TK)-lC-\ where K is the constant of gravi
tation, we may express (4.4) in the form 

Ii Rih = CT ih , 

where 

(4.5) 

(4.6) 

Moreover, since the term involving a Ii R in the 
Lagrangian (4.1) does not involve the fields cjJh' 1>h in 
any way whatsoever, the analysis of Sec. II concerning 
the Euler-Lagrange equations involving the Clebsch 
potentials is applicable verbatim, thus yielding the field 
equations (2.37) and (2.38), that is, 

(4.7) 

The system consistingoj(4.5) and (4.7) represents the 
Einstein-Maxwell equations in the presence oj elec
tric as well as magnetic charge distributions, it being 
understood that the energy-momentum tensor density 
which appears on the right-hand side of (4.5) is given 
explicitly by (3.10). Again it should be emphasized that 
this derivation of the field equations does not presup
pose a particular representation of the electrom agnetic 
field tensor Fhi in terms of 4-potentials. 

In order to determine the nature of the interaction 
between the gravitational and electromagnetic fields as 
implied by this system, we shall now construct an ex
plicit solution of these equations for the caSe of a pair of 
static fields cjJh' rph' Such fields are prescribed by the 
conditions 

'/I" =0, <p4=iV(x"), 1>" =0, 1>4=iV(xOl ). (4.8) 

According to (3.5), we then have 

(4.9) 

From (4.8) and (409) it is evident that 

ilibOl~=_€"a'V,r' /),,4=0, 
(4.10) 

which immediately implies the validity of the identities 
(2.35) and (2036) [as was to be expected, of course]. 
However, the potentials V and V must be such that the 
field equation (4.7) is satisfied, where it is to be ob
served that the explicit structure of these equations de
pends crucially on the nature of the metric. The latter 
is now assumed to be static and spherically symmetric 
in the sense that, relative to a coordinate system in 
which Xl = r, x2 = e, x3 = 1>, X4 = ict, the metric tensor 
may be expressed in the form 

(4.11) 
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where diag[a, b, c, d] denotes the 4 x 4 diagonal matrix 
with (ordered) diagonal entries a,b,c,d, while A and v 
are real functions of r only, these functions to be ulti
mately determined by the field equations. Thus 

g= !det(ii
hj

)! =r4sin2ee~+v, (4.12) 

while the inverse of (4.12) is given by 

(4.13) 

Now, for an arbitrary metric, we have from (4.9), 

b*h j =ghlgimbim 

+ (gh4 g i 3 _ gh3g i 4)V.
3

• 

But since (4.13) is diagonal, it follows that, relative to 
the metric (4.11), 

b*23 =0, 
(4.14) 

so that (iii b"J )" == 0 identically for C\' = 1,2,3. Thus, 
according to the second member of (4.7), our original 
assumptions regarding the field bhJ can be consistent 
solely with a magnetic charge distribution for which 
5'" = 0. But, because of (4.14), the fourth component of 
the second member of (4.7) yields 

_0_ (Ii gUg 44 U ) + _a_ (fgg22g 44U ) + _a_ (Jfi g33g 41 V ) 
axl ,1 ax2 .2 ax3 .3 

=iS4
, 

and hence, if we substitute from (4.12) and (4.13), 

l..(r2SinBe-<A+vl/2 aV)+~(Sinee('-vl/2 au) or or 0 e a e 

+ a~ (Si~8e(X-ul/2 ~~)=iS4. (4.15) 

This is the field equation to be satisfied by the magnetic 
potential U(r, e, cp). For a spherically symmetric po
tential U = VCr) in vacuo (that is, in regions where 54 
= 0), this reduces to 

where V' = (tv / dr, which may be integrated to yield 

(4.16) 

in which y is a constant of integration. By analogy with 
classical m agnetostatics, we shall interpret y as the 
magnetic charge which gives rise to the static potential 
VCr). [Here it should be observed that y is real by 
virtue of the fact that V is real, as is evident from 
(2.48). ] 

An analogous treatment of the first member of (4.7) 
gives rise to the conclusion that Ja ,=0, while the po
tential V(r, e, cp) must satisfy a field equation which is 
identical with the equation (4.15) for V, except that the 
right-hand side is to be replaced by iJ'. Again, for a 
spherically sym metric potential V = V(r) in vacuo (JI = 0), 
this gives rise to 

(4.17) 
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where the constant of integration e is interpreted as the 
electric charge which gives rise to V. 

Let us now turn to the field equation (4.5), whose 
treatment clearly requires the explicit evaluation of 
T Jh for the static fields defined by (4.8) and (4.9). From 
the second member of (4.10) it follows that the only 
nonvanishing elements of bhi are given by i.[j b23 = - U' 
= - i,fj b32

• With the aid of (4.11) it is then inferred that 
the only nonvanishing components of i,fj bJ h are iii b2

3 

= U'r 2sin28, i,fj b3
2 = - U'r2. Accordingly the square of 

the matrix (bi
h

) is given by 

gb2 = (U,)2r 4 s in28diag[0, 1,1,0]. 

Because of (4.12) this implies that 

b2 = (U')2e-()'+~)diag[0, 1,1,0]. (4.18) 

Similarly, since it follows from (4.9) that the only non
vanishing elements of (b* hi) are bi4 = - U' = - btl' it is 
seen that the only nonvanishing components of b*h

J 
are 

b*14=-e-~U', b*\=e-~U', giving 

(4.19) 

If we now substitute from (4.16), we may infer from 
(4.18) and (4.19) that 

b2 + (b*)2 = yr -4diag[ - 1 , 1 , 1 , - 1] . (4.20) 

In the same manner it is easily established with the aid 
of (4.10)-(4.13), and (4.17), that 

(4.21) 

This, together with (4.20) is substituted in (3.21) to 
yield the following expression for the energy-momen
tum tensor density: 

T = ~ c-2 (e2 - y).[j r-4diag[ -1 ,1 , 1 , - 1] . (4.22) 

Because of (4.11), this is equivalent to 

1 -2 { 2 2 = -4 0 - r 2 0 0 ( (
e~ 0 0 0) 

TJh ='2C \e - y )vg rOO _ r2sin28 O' 4.23) 

o 0 0 e~ 

This expression occupies the right-hand side of the 
field equation (4.5). The explicit form of the components 
of the Ricci tensor which occur on the left-hand side, 
relative to the metric (4.11) is, of course, well known, 
being given bylS 

Putting 

c= ~c-2(e2 _ y2)e, (4.24) 

and proceeding along the usual lines, 14 we see that Eqs. 
(4.5) assume the following explicit forms for (j, h) 
=(1,1), and (j,h)=(4,4): 

the combination of which yields 
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- r-1(A' + 11')=0. 

If it is assum ed that the metric is flat at spatial infinity, 
this implies that X = - II. Equations (4.5) for (j, h) = (2,2) 
and (3,3) are identical, and now reduce to 

e~(l + rll') - 1 = - Cr-2, 

yielding 

&=1-2m/r+C/r2, (4.25) 

where m is a constant of integration, which, by analogy 
with the Schwarzschild solution, is identified with the 
mass of the object which gives rise to the spherically 
symmetric gravitational field. On substituting from 
(4.6) and (4.24) in (4.25), we finally obtain 

(4.26) 

The metric (4.11), in which X, II are given by (4.26), 
represents a solution of the Einstein-Maxwell equations 
in the presence of a pair of static fields V(r) , U(r). 15 

Moreover, as expected, the field equations (4.16) and 
(4.17) imply the inverse square laws by virtue of the 
fact that X = - II. 

The respective signs which appear before the terms 
e2 and y2 in (4.26) may be somewhat surprising at first 
sight, it being recalled that E and y must be real as a 
consequence of our construction. In order to trace the 
origin of this phenomenon, which is obviously inherent 
in the structure of the energy-momentum tensor, let 
us evaluate the component - T 44 (which is interpreted as 
the energy density in classical electrodynamics) by 
means of the representation (2.42) in flat space-time. 
From (3.10) and (3.5) we have 

c2T~ =FJI fhl - iF*Jlbt, - t{j~(F • F). (4.27) 

In terms of the notation (2.47) it follows directly from 
(2.42), (2.43), and (3.5) that 

F F E (VV+ 1 a1/!) iF* b* =H'(VU+!. d¢) 4" J 4" =' ~ at' 4" 4" cat ' 

while 

When these values are substituted in (4.27) with j=h=4, 
it is found that 

C2T! =E'(VV+!. ~)-H'(VU+!. a¢)_iW2 _E2
) 

c at c at ' 

or, after an application of (2.48) and (2.49), 

c2T!=HIJ2 - E2) - E' (V X ¢) - H ,(V xl/'). 

(4.28) 

(4.29) 

In classical electromagnetic theory, in which ¢ = 0 and 
H = V xl/', this reduces to the well-known form 

- c2T! = t(E2 + H2), 

which is always nonnegative. However, in the present 
context, this can no longer be asserted. Indeed, in the 
case of the static field defined by (4.8), it follows from 
(2.42), (2.43), (4.9), and (4.10) that 

E=-VV, H=-VU, 

so that (4.28) assumes the form 
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(4.30) 

which may obviously assume both positive and negative 
values. In particular, when the solutions (4.16) and 
(4.17) are substituted in (4.30), the latter assumes the 
value 

_ c2T! =i~2_y2)r'\ 
[as is also evident directly from (4.22)], whose sign de
pends on the relative magnitudes of € and y. 

V. DUALITY ROTATIONS 

A conceptually important role in previous theories16 

based on the existence of both electric and magnetic 
charges is played by the concept of invariance under the 
so-called duality rotations .17 It would appear that in 
Schwinger's theory a most significant aspect of these 
rotations is contained in the relations 

p=pcosO+usinO, u=-psinO+ucosO, (5.1) 

by means of which a magnetic charge at a point may, 
in a sense, be "transformed away" by suitable choice 
of the angle B. Clearly (5.1) is the fourth component of 
the relation 

Jh=Jhcos(}+ShsinB, Sh=-JhsinB+ShcosB, (5.2) 

which ensures the invariance of the field equations (2.33) 
and (2,34) under the general duality rotation 

F hi= Fhi cosO -Fti sinB, iti =Fti cosB+ Fhj sinB, 

(5.3) 

We shall see that, within the context of the present 
analysis, there are two fundamentally distinct approach
es, both of which lead directly to (5.1)-(5.3). The first 
of thes e is bas ed on transform ations of the potentials, 
namely, 

Wj=>J!jcosB+¢jsinB, ¢j=-wjsinB+¢jcoSB, (5.4) 

these being suggested directly by (5.1). Because of 
(3.5) this gives rise to 

fhi =fhi cosO - ibt, sinO, it, =it, cosO + bhj SinO, (5,5) 

together with 

- (5.6) 
bt = bti cos 0 - ifhi sin O. 

It is immediately evident from (2.4) that (5.3) is implied 
by (5.5) and (5.6), which will be called the induced 
duality rotations [having been induced by (5.4)]. On the 
other hand, the rotation (5.3) also results, in a trival 
manner, from 

(5.7) 

(5.8) 

which we shall call the standard duality rotation [since 
its structure is identical with that of (5.3)]. The field 
equations (2.33) and (2.34) are invariant under both 
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types of duality rotations, provided that (5.2) is as
sociated with each, as will be assumed henceforth. For 
future reference we observe that, as a consequence of 
(5. 2), the electric and magnetic charges E and y of a 
particle must be subjected to the transformations 

E=EcosB+ysinB, Y=-EsinB+ycosB, (5.9) 

in order to ensure the invariance of the theory under 
(5.3). 

There are, however, Significant differences between 
induced and standard duality rotations. For instance, 
the identities (2,35) and (2.36), together with the special 
form (2.37) and (2.38) of the field equations, are in
variant under the former, but not under the latter. On 
the other hand, it may be easily verified that the ex
pression (3.21) for the energy-momentum tensor den
sity T is invariant under the standard duality rotation, 
while this is not true for the induced duality rotation. 
Thus an application of the former cannot affect the 
question as to whether or not T2 is a multiple of the unit 
matrix. However, it may also be shown that the com
mutator A == fb - bf is invariant under induced duality 
rotations, and hence the latter is also incapable of af
fecting the condition (3.30) which determines the char
acter of T2. Nevertheless, it may be worth observing 
that the equivalent condition (3.36), which is automati
cally invariant under the standard duality rotation for 
fixed p,q, is invariant under the induced duality rota
tion if and only if p and q transform according to 

p = p cos B + q sinO, Ii = - p sinB + q cos 0, 

whose structure is identical with that of (5.9). 

VI. THE EQUATIONS OF MOTION OF A TEST 
PARTICLE 

(5.10) 

We shall now consider the motion in V4 of a test parti
cle of rest mass m, endowed with electric and magnetic 
charges, under the influence of an external electro
magnetic field Fhi • It is supposed that the effects of m 
and these charges on the tensor fields Xhj and Fhj are 
negligible. If the equations of motion are to be derived 
from a variational principle. as is assum ed here, the 
central problem revolves about the determination of a 
suitable (single integral) Lagrangian A (Xi • xi). where 
xi = dxi / dT for an as yet arbitrary parameter T. 

It is supposed that A is of the form 

(6.1) 

where Ao refers to the inertia of the particle and c· l A[ 
is the interaction Lagrangian. If it is required that the 
action integral J II. dT be invariant under coordinate as 
well as parameter transformations, it is necessary to 
stipulate (i) that II. is invariant under coordinate trans
formations, and (ii) that A is homogeneous lB of the first 
degree in xi. This leads to the usual form for 11.0: 

Ao = rn ('(~hi_0_yj)112, (6.2) 

for which (under the exclusion of null-directions l9
) 

E.(A)= ~(all.")_ 011.0 
, 0 ciT nx' axi 

=m 2
('2I1.ol [~h'(~~) -Ao{~~)ghj-Yhl (6.3) 
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where Dih / DT denotes the absolute derivative of .0 with 
respect to T. If, in particular, the parameter T is 
identified with the proper time a of the particle, that is, 

dT2 = da 2 =ghjdx!'dxj , 

then Ao=mc, and (6.3) reduces to 

E/Ao) = mCKhj(DX"/ Da)o 

(6.4) 

(6.5) 

As regards the interaction Lagrangian Al the situa
tion is somewhat less obvious. In addition to the con
ditions (i) and (ii) it is stipulated (iii) that Al does not 
contribute terms involving higher derivatives of X' to 
Ej(A); (iv) that in the absence of an external electro
magnetic field Al is the derivative with respect to T of 
some scalar function L: [so that EJ(AI )= 0 identicall~ 
whenever Fhj =0]; (v) that Al is invariant under the gen
eral duality rotation (5.3) (so that the resulting equa
tions of motions possess this property). 

Condition (iii) implies that a2 Ar/ axJ a.0 = 0, and thus, 
by (ii), that 

(6.6) 

where Z j(x!') is an as yet unspecified vector field. We 
therefore introduce the I-form 

W=Zidxi =AIdT, 

whose exterior derivative is 

dw=Hzj,h-Zh)dxh/\ dxJ , 

which can be expressed as 

dw=~Ej(AI)dT/\ dxj . 

(6.7) 

(6.8) 

(6.9) 

According to condition (iv), we must have w=dL:, that 
is, dw = 0, whenever FhJ = O. This requirero ent is cer
tainly satisfied if there exist parameters Ci ,{3 such that 

dw - .!. (Ci F - {3F * )dx!' /\ dxJ 
- 2 hJ hJ • (6.10) 

If it assumed that dw does indeed possess this form, 
then, by condition (v), the coefficient of dx!' /\ dx j in dw 
must be invariant under the duality rotation (5.3). Thus, 
if 0: j denote the transforms of Ci and (:J under (5.3), it 
is necessary that 

CaFhj - ZFhj) = (acos8 - ~sin8)Fhj - (asin8 + ~cOS8)F:j 

yielding 

Ii =Cicos8+{3sin8, {:J=-Cisin8+{3cos8. (6.11) 

This transformation has a structure which is identical 
with that of (5.9), and accordingly it would be consistent 
to ultimately identify Ci and {3 with constant multiples of 
E and y respectively, that is, to set 

Ci=k€, {3=ky. (6.12) 

Let us write (6.10) in the form 

(6.13) 

where we have put 

n = ~(a Fhj - {:JF:)dxll /\ dxj . (6.14) 

Obviously the most crucial aspect of the identification 
(6.13) is the resulting requirement that 
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(6.15) 

which, in turn, is equivalent to 

Ci (Fhj,k + FJk •h + Fkh ) - (3(F:j,k + Fjk.h + F:h) = O. (6.16) 

In order to analyze this condition, we substitute from 
(2.4), noting at the same time that, by virtue of (3.5), 

fhiok + f Jk •h + f kh •J = 0, b:J•k + bjk.h + b:h•J = 0 (6.17) 

identically. Hence (6.16) reduces to 

MhJ •k +MJk •h +1V1kh •J =0, 

where we have written 

(6.18) 

MhJ = iCi bhJ - (3fhj. (6.19) 

But (6.18) implies the existence of a vector field WJ(:x!') 
such that 

MhJ = WJ•h - Wh.}, (6.20) 

which is clearly a condition on the potential fields Jh 

and ¢h that is not necessarily inherent in the field equa
tions. However, unless this requirement is satisfied, 
there cannot exist an interaction Lagrangian AI as 
specified by (6.7) and (6.13).20 

Therefore, before proceeding, let us glance at the 
implications of (6.20) more closely. Clearly (6.20) may 
be expressed as 

(6.21) 

from which it follows that 

where, in the last step, the cyclic identity satisfied by 
the curvature tensor has been used. Conversely. if 
this condition is satisfied. there exists a totally skew
symmetric relative tensor field WhJZ such that 
.fjiM*hJ=awhiZ/axZ. However, any such field WhiZ may 
be expressed in the form iEhilkW

k
, with 3! Wk=iEhizkWhJZ, 

which guarantees the existence of a field W
k 

such that 
(6.21) holds. Thus a necessary and sufficient condition 
that (6.20) be satisfied is represented by 

(.fji M*hJ)li = O. (6.22) 

On the other hand, it follows from (6.19) that 

.fji M*hi = i"l.fji b*h} + !3.fji fh i , (6.23) 

so that the field equations (2.37) and (2.38) imply 

(6.24) 

Thus the crucial condition (6.22). and hence also (6.15). 
is always satisfied in l'aC1IO, or more generally, when 
Jh, Sh are related according to 

(6.25) 

Because of (5.2) and (6.11) the left-hand side of (6.25) 
is invariant under the duality rotation (5.3); moreover, 
it is remarkable that the tensor MhJ as defined by (6.19) 
is invariant under the induced duality rotations (5.5) and 
(5.6), while this is not true for the standard duality 
rotation. Also, because of (2.35) and (2.36), 

(.fji MhJ)I} = 0 

identically. 
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Assuming, then, that (6.22) is satisfied, it is con
cluded by means of (6.8) and (6.14) that the identifica
tion (6.13) yields 

(6.26) 

In view of (2.4), (6.19), and (6.20) this is equivalent to 

where we have put 

Xj = cd'j + !3cfJ j , (6.27) 

whose invariance under the duality rotation (5.4) follows 
directly from (6.11). Thus 

Zj=Xj+Wj+<J>,j' (6.28) 

where <J> is an arbitrary scalar field. This vector field 
is to be substituted in (6.6) to yield the final explicit 
expression for the interaction Lagrangian AI> where it 
should be noted that <J> ,j may be omitted since it does 
not contribute to E j (A r)' 

More directly, it is evident from (6.8), (6.9), and 
(6.26) that 

(6.29) 

This holds for any choice of the parameter T; however, 
if we again identify T with a in accordance with (6.4), 
the derivatives ;\-1' will represent the components of the 
4-velocity of our particle. A combination of (6.4) with 
(6.29) now yields the final form of the equations of 
motion, namely 

E/A) =0, (6.30) 

where 

E
J 

(A) == mcgh/D;;' IDa) + c- 1 h Fjh - (3F;h)x h
, 

which, by virtue of our construction, is tensorial and 
invariant under the general duality rotation (5.3). 

In flat space-time, with ghj = - 0hj' it is found with the 
aid of the representation (2.42) that Eqs. (6.30) assume 
the form 

d~ (1 _1'::/C)I/2) =0' (E + c·
1
v XH) +f3(H - c- 1vXE) 

(6.32) 

for j=1,2,3. Because of the homogeneity of A [which 
implies that E

J 
(A);} = 0 identically 1, the fourth member 

of (6.30) is a direct consequence of the three equations 
(6.32): in fact. it is merely the energy conservation 
law: 

~((1 ~C2 2)1/,.~=(O'E+!3H)'V. 
dt -1' / c ) 

(6.33) 

In view of (6.11), and the classical expression for the 
Lorentz force, the parameters 0' and !3 are to be iden
tified with the electric and magnetic charge respectively 
of the test particle. 

In conc Ius ion let us briefly glance at the explicit form 
of the condition (6.18) in flat space-time for the case of 
a static field as defined by (4.8). From (6.19), (6.23), 
and (4.9) it follows that under these circumstances 
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Thus M4v==O, while the vector M=(M23,M3UM12) is 
given by 

M = - V (0' U - !3V). (6.34) 

The condition (6.18) then reduces to 

O'V 2 U - (3v 2 V = 0, 

which is automatically satisfied by the solutions of 
(4.16) and (4.17). Thus, in this case, the validity of 
the equations of motion (6.32) does not depend on any 
additional conditions (as was to be expected from the 
general theory above). Indeed, it is precisely within a 
context of this kind that these equations of motion are 
applied by Schwinger, 21 who considers the motion of a 
test particle with electric and magnetic charges 0',!3 in 
the field generated by a stationary body possessing 
charges € and y. It is remarkable that the conserved 
angular momentum vector of Schwinger may, by virtue 
of (6.34), by expressed (in the nonrelativistic limit) as 

which may Shed some further light on the physical sig
nificance of the tensor ,"vihj . 

ACKNOWLEDGMENTS 

It is a pleasure to thank Dr. David Lovelock and Dr. 
Marian O. Scully, both of the University of Arizona, 
for valuable discussions. 

*This research was sponsored in part by NSF G P :)28:)0. 
lJ. Schwinger, (a) Phys. Rev. D 12, 3105 (1975); (b) Science 
165. 757 (1969). 

2H. Lamb, Hydrodynamics (Cambrdige U. P., London and 
New York, 19:32), 6th ed., p. 248. 

:)H. Rund, TOPics in Differential Geometry, edited by H. Rund 
and W. F. Forbes (Academic, New York, 1976), p. 111. 

lReference 1 (b). 
5Latin indicesj,lz,k,' • 0 range from 1 to 4; the summation 
convention is operative throughout with respect to these suf
fixes. Partial derivatives with respect to positional coordi
nates are denoted by commas, e.g., itj,h-C 8<J,/8xh • 

GUere, and in the following, the vertical bar denotes covariant 
differentiation, the latter being defined as usual in terms of 
the Christoffel symbols rjk associated with the metric Khj. 

7This step depends tacitly upon the assumption that (F xF), 
which is proportional to (det(Fhj)]1/2, does not vanish. If this 
assumption is avoided, the resulting analysis is consider[1bly 
more complicated and involves [1n eX[1min[1tion o[ the null 
space of p.j. See Ref. :3 for the tre[1tment of the case Jk - O. 
Sk~ O. 

8For the case of a flat space-time this representation reduces 
to one su~gested by N. Cabibbo and E. Ferrari (Nuovo 
Cimento 23. 1147 (1962)] on the grounds t1wt the cOlmterparts 
of (2.3:1) and (2. :14) can be solved by means of such a 
decomposition. 

9Here, and in the sequel, Greek indices 0', p, y .••• range 
from 1 to :3; the summation convention is operative in respect 
of these indices also. 

loH. Rund, Abh. Math. Sem. Univ. Hamburg 29, 24:1 (1966); 
D. Lovelock and H. Rund, Tensors, Differential Forms, and 
Variational Principles (Wiley-Interscience, New York 1875), 
pp. :302-4. The calculations given in these references are 
concerned solely with the case when L = L(ghk; d'h; wh ,J: how
ever, the derivation of (:3. :1), when L depends on an additional 

Hanno Rund 94 



                                                                                                                                    

field <Ph and its derivatives <Ph,k' follows precisely the same 
pattern, and is therefore suppressed here. 

l1G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925). 
12Reference 10, p. 313 
13 A. S. Eddington, The Mathematical Theory of Relativity 

(CambridgeU.P., Cambridge, 1952), 2nded., p. 85. 
14Reference 13, p. 185-86. 
15Clearly (4.26) represents a generalization of the well-known 

Reissner-Nordstrom solution, to which it reduces when Y= 0 
(Ref. 13, p. 185.) 

16Reference 1; also D. Zwanziger, Phys. Rev. 176, 1489 
(1968) . 

95 J. Math. Phys., Vol. 18, No.1, January 1977 

17These seem to have appeared for the first time in Ref. 11. 
18H. Rund, The Hamilton-Jacobi Theory in the Calculus of 

Variations (Van Nostrand, London and New York, 1966; 
Krieger reprint, New York, 1973), pp. 143 and 180. 

19Reference 18, p. 179. 
20This difficulty does not arise in classical electrodynamics, 

for by putting {3=0 in (6.14), and disregarding bhj in (6.16), 
the latter condition is simply reduced to the first identity in 
(6. 17). It would appear that this phenomenon is closely re
lated to a similar difficulty discussed in detail by F. Rohrlich 
[Phys. Rev. 150, 1104 (1966)]. 

21Reference 1(b), p. 738. 

Hanno Rund 95 



                                                                                                                                    

On Wentzel's proof of the quantization condition for a 
single-well potential 
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Wentzel's elegant method for deriving the quantal generalization of the Sommerfeld quantization 
condition, which has been criticized by other authors, is justified and put on an irrefutable basis. Clarifying 
comments on some questions related to the discussion in the present paper are also made. 

1. INTRODUCTION 

Wentzel (cf. pp. 519-21 in Ref. 1) has devised an 
elegant method for deriving, in the JWKB approxima
tion of any order, the asymptotic quantal generalization 
of Sommerfeld's condition for bound states in a single
well potential. It was, however, pOinted out by Kramers 
(cf. p. 836 in Ref. 2) that a further establishment of 
Wentzel's proof is needed. Later Dunham, 3 who re
peated and strengthened Kramers's criticism of 
Wentzel's proof (cf. pp. 715 and 718 in Ref. 3), used 
essentially Zwaan's4 method to justify Wentzel's result. 
More recently Wentzel's method of proving the quantiza
tion condition has been used by other authors (cf. p. 186 
in Ref. 5, pp. 384-5 in Ref. 6, and p. 630 in Ref. 7) 
but without the desired clarification of the proof. The 
purpose of the present paper is to clarify Wentzel's 
proof by filling certain gaps in it. In this way one can 
justify Wentzel's proof completely and thus in a way re
ject the criticism raised against it. Unless otherwise 
stated, our notation follows those used by Wentzel. 1 

As preparation we discuss in Sec. 2 the representa
tion in the complex x plane of wavefunctions, which tend 
to zero as the independent variable x tends, along the 
real axis, to one of the limits - 00 or + 00, but which 
need not correspond to eigenfunctions (i. e., which need 
not be zero at both - 00 and + 00). This discussion is 
related to results obtained by Birkhoff (cf. pp. 696-700 
in Ref. 8), Kemble (cf. pp. 558-60 in Ref. 9 and pp. 
574-5 in Ref. 10), Seifert (cf. Satz 1 on pp. 175-6 in 
Ref. 11), Olver (cf. p. 809 in Ref. 12 and Secs. 2 and 4 
in Ref. 13), and N. Froman and P. O. Froman [cf. Eqs. 
(3.41), (4.4a), and (4. 4b) in Ref. 14; cf. also Ref. 151. 

In Sec. 3 we describe in passing how the single
valuedness of the wavefunction has been used by 
Sommerfeld (ef. pp. 160-1 and 166 in Ref. 16) and by 
Kemble (cf. pp. 559 and 560 in Ref. 9 and pp. 105, 107, 
and 574-5 in Ref. 10) for a very simple derivation of 
Wentzel's quantal generalization of the Sommerfeld 
quantization condition. 

Our analysis of Wentzel's own proof of this quantiza
tion condition is then given in Sec. 4. 

In Wentzel's quantization condition [ef. Eq. (12) in 
Ref. 1] the integrand in the left-hand member is not real 
in the claSSically allowed region of the real axis, and 
the right-hand member is proportional to an integer, fl. 
For the first-order JWKB approximation, Kramers2 

wrote the quantization condition in a more convenient 
form, where the integrand on the left-hand side is given 

by a Simpler expression, which is real in the classical
ly allowed region of the real axis, and the right-hand 
side is proportional to a half-integer, k +~. Dunham 
(cf. pp. 719-20 in Ref, 3) transformed Wentzel's 
general quantization condition involving higher-order 
JWKB approximations into a generalization of Kramer's 
half-integer quantization condition. Dunham conSidered, 
however, only the first few higher-order JWKB correc
tions. The transformation was later made quite general 
by Urban5 who conSidered JWKB approximations of any 
order (cf. pp. 186-7 in Ref. 5). Starting from 
Wentzel's quantization condition with all terms included, 
and using a transformation of the sum of the terms with 
odd indices in the JWKB series obtained by N, Froman 
[cf. Eq. (5b) in Ref. 15], we give in Sec. 5 an alterna
tive derivation of the half-integral quantization condition 
involving phase -integral approximations of arbitrary 
order. This quantization condition is the same as the 
quantization condition derived by Dunham and Urban (cL 
above). 

2. REPRESENTATION OF WAVEFUNCTIONS 
VANISHING AT _ooOR AT +00 BY JWKB FUNCTIONS 
OR PHASE-INTEGRAL FUNCTIONS IN CERTAIN 
REGIONS OF THE COMPLEX X PLANE FAR AWAY 
FROM THE CLASSICALLY ALLOWED REGION 

Consider a single -well potential and assume that for 
the functionp2(x) in Wentzel'sl Eq, (1), the zeros off the 
real axis as well as the Singularities lie far away from 
the classically allowed region of the real axis. Cutting 
the complex x plane between the two classical turning 
points, i. e., the two pertinent real zeros of p2(X), we 
choose p(x) to be positive on the upper lip of the cut. 
Whether the bottom of the potential is approximately 
parabolic or not, it fOllows from the general behavior 
in the complex x plane of the level lines of the function 
exp[i{'p(x)rjy]: that, if one excludes a certain region 

around the classically allowed region and also a more 
remote region containing the further zeros and singu
larities of p(x), which may possibly exist, and considers 
a certain band encircling the claSSically allowed region, 
there is in this band a region L to the left in which any 
point x can be joined by a path from - 00 along which 
exp[-if'p(x)dxj increases as one moves from -00 to 

" and there is a region R to the right in which any point 
, can be joined by a path from +00 along which 

exp[ - i [' p( ,) dx 1 increases as one moves from + co to 
x, and for Land R there is a common region above as 
well as below the real axis. See Fig.!. 
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a 

b 

c 

FIG.!. The full-drawn curves in Fig. 1a (which refers to the 
case of a harmonic oscillator) and Fig. 1b (which refers to the 
case of a quartic oscillator> are anti-stokes' lines, i. e., level 
lines of the function 1 exp{iJxp (x) dx} 1 , where p (x) is the func
tion in Wentzel's! Eq. (1). The dashed lines are Stokes' lines. 
In Fig. 1c the regions L (indicated by / / / /) and R (indicated by 
/ / / /) are shown. 

Recalling results obtained by Birkhoff (cf. pp. 696-
700 in Ref. 8) and by Seifert (cf, Satz 1 on pp, 175-6 
in Ref. 11), one realizes that, even if the energy does 
not correspond to a bound state, a solution l/JL of 
Wentzel'sl Eq. (1) tending to zero as x- - "" is, except 
for a constant factor, in the region L asymptotically 
represented by the expression 

[fX 2 . ~ (h )V J 
exp h

m 
~o 21Ti yv(x)dx, (1) 

provided that we choose the sign of yo(x) so that J'o(x) 
= - p(x) [cf. Eq. (6) in Ref. 1]. Similarly, a solution »;1/ 
tending to zero as x- +00 is, except for a constant fac
tor, in the region R asymptotically represented by the 
expression (1) with the same choice of sign for yo(x) as 
above. 

To make Wentzel's proof free from objections it is, 
as will be seen in Sec. 4, sufficient to use what has 
already been said above. At this point we shall, how
ever, make some further comments related to the con-
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tents of the present section but of interest also in other 
contexts. 

In the first-order JWKB approximation with yo(x) 
= -p(x), expression (1) becomes [cf. Eq. (9) in Ref. 1 J 

(1 ,) 

From what we have said above, it is, in particular, 
clear that a solution 'j;L of Wentzel'sl Eq. (1), which 
tends to zero as x- - "", is approximately equal to the 
expression (1 ,), except for a constant factor, in the 
region L, and that a solution I/J R which tends to zero as 
x - + 00 is approximately equal to the expression (1 ,), 
except for a constant factor, in the region R. With 
quantitative estimates of the approximations involved, 
this result can also be obtained from work by Olver 
(d. p. 809 in Ref. 12 and Secs. 2 and 4 in Ref. 13) and 
by N. Froman and P.O. Froman [cf. Eqs. (3.41), 
(4.4a), and (4.4b) in Ref. 14]. 

The first-order JWKB approximation is the same as 
the lowest order of certain phase-integral approxima
tions introduced by N. Froman, 15 the higher orders of 
which are related to the higher-order JWKB approxima
tions in the way described on pp, 453 -4 in Ref. 17. For 
the applications to certain physical problems which often 
arise, for instance, in connection with the radial 
Schrodinger equation, it is important that there now 
exists a satisfactory and Simple procedure for modifying 
these phase-integral approximations of arbitrary order 
(cf. Ref, 18 and Ref, 19, pp. 126-9). When these 
(unmodified or modified) phase-integral approximations 
are used, one can prove, with quantitative estimates, 
according to the methods developed in Ref. 14 (cf. also 
Ref. 15) that a wavefunction ('fL or 1/J1/' respectively) 
which tends to zero as ¥- - 00 or as x- +00, respec
tively, is, apart from a constant factor, in a region 
similar to the above mentioned region L or R, respec
tively, approximately given by the expression 

q-l/2(x)expl-i /xq(x)dx], (1" ) 

where q(x) is the truncated series (16) in Ref, 19 with 
the appropriate choice of sign for q(x). In the case of 
unmodified phase-integral approximations of the order 
2N + 1 the function q(x) is given by the truncated series 
-(21Ti/h)L::=o[h/(21Ti}j2ny2n(x) containing only terms yv(x) 
with even indices v; cf. (1). Note the differing sign con
ventions for the functions 1'2n(X) and q(xL 

When the energy is not equal to an eigenvalue, the 
previously defined solutions ');L( '\:') and ;jlR(X) are quite 
different and linearly independent, but yet, after having 
been multiplied by convenient constant factors, these 
solutions can both be represented by the same truncated 
JWKB expression (1) or the same phase-integral ex
pression (1°) in the common parts of the regions Land 
R (d. Fig. 1). Therefore, the Wronskian of I/JL(X) and 
I/JR(X), which is different from zero since 'h(X) and I/JR(') 
are linearly independent, is obviously not obtained 
correctly when calculated by means of (1) or (1 "). To 
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explain this fact we note that, when i)! L(X) and IjJR(X) are 
represented by (1) or (1") in the regions common to L 
and R, the relative errors are small compared to unity, 
whereas the absolute errors are not small compared to 
the values which IfJLh') and i)!R( x), respectively, assume 
in the classically allowed region of the real axis, since, 
in the common parts of the regions Land R, the values 
of IIp L(X) I and Ii)!R(X) I are large compared to the corre
sponding values in the classically allowed region. The 
Wronskian of 'p L(X) and IPR( x), which can be obtained 
when IPL(X) and 'PR(X) are approximately known in the 
classically allowed region, can therefore not be obtained 
correctly when 'h(x) and I~R(X) are represented by (1) or 
(1") in the common parts of the regions Land R. The 
calculation of this Wronskian is important in connection 
with the normalization of the wavefunction [cf. Eq. (6) 
in Ref. 20; also cf. Refs. 21 and 22] and in problems 
concerning the probability density at the origin. 23 

3. USE OF THE SINGLE-YALUEDNESS OF THE 
WAVEFUNCTION FOR DERIVING WENTZEL'S 
QUANTIZATION CONDITION IN A VERY 
SIMPLE WAY 

The exact wave function 'iJ, corresponding to an eigen
value of the energy, shall tend to zero when x - - 00 as 
well as when x- +00, In the case of a single-well poten
tial this eigenfunction Ip must, except for a constant fac
tor, be asymptotically represented by the expression 
(I) in the whole band consisting of the regions Land R 
(cf. the previous section). Since the exact wavefunction 
is single-valued also around the classical turning 
pOints, its asymptotic expression (1) must be single
valued when x moves, for example, one turn around both 
classical turning points. This requirement was used by 
Sommerfeld (cL pp. 160-1 in Ref. 16) and by Kemble 
(cf. pp. 558-9 in Ref. 9 and pp. 574-5 in Ref. 10) for 
deriving Wentzel's quantization condition, i.e., Eq. 
(12) in Ref. 1, where k now appears as an unspecified 

. integer which is not a priori related to the number of 
nodes of the eigenfunction. Being based on the repre
sentation of the bound state wavefunction by expression 
(1) at some distance from the classically allowed re
gion, such a proof is to some extent related to, although 
more straightforward than, Wentzel's proof, which will 
be discussed in the next section. When the quantization 
condition is fulfilled, expression (1) is single -valued in 
the whole band conSisting of the regions Land R, and 
this simple expression represents there the bound state 
wavefunction IjJ(X). It is, in fact, only when x approaches 
the classically allowed region between the classical 
turning points that one needs to use a linear combination 
of both JWKB functions to represent the bound state 
eigenfunction 1~(X). 

4. JUSTIFICATION OF WENTZEL'S PROOF 

ConSider the exact wavefunction 'h{x) for a bound 
state of a quantal particle of energy Ek in a one-dimen
sional single-well potential. It is well known (cf. p. 630 
in Ref. 17) that the solutions of the one -dimensional 
wave equation have no zeros outside the real axis, and 
that the zeros on the real axis are all simple zeros 
situated in the claSSically allowed region. Furthermore, 
if the index i? enumerating the energy eigenstates, which 
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are all nondegenerate, is chosen such that Eo <El 
< E2 < .. " the eigenfunction 'h(x) has precisely k (~ 0) 
such simple zeros, but no Singularities, in a region of 
the complex x plane from which we exclude the remote 
region containing possibly existing poles of the poten
tial. In the region thus considered the wavefunction 
'h(x) is a regular analytic function of the complex vari
able x with precisely k zeros, which are all simple. In 
the same region the quotient 'p~(x)Nk(X) is thus an ana
lytic function of x with simple poles at the k zeros of 
ljJk(X) , and at each one of these poles the residue is equal 
to 1. If C is a closed contour which lies in the region of 
the complex x plane under consideration and encircles 
the k zeros of lVk(X) in the positine sense, we thus have 
the formula 

1 f i)!~(x) 
217i c i)!k(X) dx=k, 

which is exact, since 'Pk{X) is assumed to be an exact 
eigenfunction. 

(2) 

We can choose the contour C to enclose the two 
classical turning points and to pass everywhere far away 
from the classically allowed region, so that we can rep
resent the eigenfunction i)!k(X) by the asymptotic expres
sion (1) everywhere on the contour of integration C. 
From (1) it then follows that the asymptotic formula 

I~~(X) 217i~(h)" () ----L- yx 
~'k (x) h ""0 2 17i .". 

(3) 

is valid on the whole contour C. Since the series on the 
right-hand side of (3), when truncated, is slowly vary
ing on the contour C, it is not dangerous to use such a 
truncated expression for approximately calculating the 
integral in the exact quantization condition (2). We can 
thus insert (3) into (2), getting Wentzel's asymptotic 
quantization condition [Eq. (12) in Ref. 1] 

f ::... ( h )" L- -2 . yv(.x)dx=i?h, 
])=0 1fl 

C 

(4) 

where, as previously mentioned, Yo (x) = - p(x) with p(x) 
positive on the upper lip of the cut along the classically 
allowed interval of the real axis, and where the path of 
integration C encircles the classically allowed region 
in the positive sense. In (4) the contour C can be de
formed conveniently provided that it does not cross any 
branch cuts or Singularities of the functions Yv(x). 

Although not as simple and direct as the proof de
scribed in the previous section, Wentzel's proof has the 
merit of showing clearly that the quantum number i? is 
equal to the number of nodes of the eigenfunction. 

5. TRANSFORMATION OF WENTZEL'S 
QUANTIZATION CONDITION INTO A SIMPLER 
FORM 

In Wentzel's quantization condition (4) the terms Yo, 
.\'2' •• , as well as the terms Y1> "3' ••• appear in the 
integrand in the left-hand member, Because of the pres
ence of the latter terms, the integrand is not real in the 
claSSically allowed region of the real axis> As we have 
already mentioned in the Introduction, Dunham 3 and 
Urban5 have transformed Wentzel's quantization condi
tion into the now well-known form, in which the inte
grand in the left-hand member contains only the terms 
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VO' Y2' ••• and is real in the classically allowed region 
of the real axis, and the right-hand member is propor
tional to the half-integer quantum number k +~. The 
argumentation used by Dunham and Urban can be ex
plained as follOWS. From Wentzel'sl Eqs. (9) and (6) it 
follows that Y1(X) = - td[lnp2(x)l/dx, and recalling that 
p2(X) has precisely two simple zeros inside the contour 
C defined in the previous section, one thus realizes that 
PCY1(x)dx= - m. Since, furthermore, it can be shown 
that for any odd value of v ~ 3 the function Yv(x) can be 
written as the derivative with respect to x of an analytic 
function which is single -valued on the contour C, one 
gets the formula 

(5) 

Using this formula, one can write the quantization con
dition (4) in the form 

f "" ( h )2n L -2' Y2n(x)dx= (k +i)h, ,-0 711 
C 

(6) 

where the asymptotic series in the integrand on the left
hand side is real in the classically allowed region of the 
real axis. By reversing the sense of integration along 
the path C and at the same time changing the signs of 
the functions YZn(x) in (6), one obtains this quantization 
condition in a form corresponding to Eqs. (10.22) in 
Ref. 14 and (13) in Ref, 15. 

We shall now demonstrate another way of transform
ing Wentzel's quantization condition, i. e., Eq. (4) in 
the present paper, into the form (6). FollOwing N. 
Froman (cf. pp. 542-3 in Ref. 15), we realize that 

"" ( h ) v ~ ( h )2. I. -2' Yv(x) = L -2' Y2,(X) v_o 711 n-O 111 

h d { ["" (h )2n ~_lf2} +-2 . d- In I. -2' Y2n(X) • 
711 X n-O 111 

(7) 

According to Eq. (6) in Ref. 1 we have Y~(X)=p2(X). The 
function p2(X) is single -valued and regular in the region 
of the complex x plane under consideration, and in this 
region the only zeros of p2(X) are the classical turning 
pOints, which are simple zeros of p2(X). The truncated 
series L:~_0[h/(211i)12nY2nCr)/yo(x), which has no branch 
points in the region of the complex x plane under con
sideration, has a certain number of simple zeros in the 
neighborhood of each classical turning point, and at the 
two classical turning pOints it has poles, the order of 
each pole being equal to the number of zeros in the 
neighborhood of the claSSical turning point in question 
(cf. pp. 456-9 in Ref. 17). Hence this truncated series 
is single -valued in the region in question of the complex 
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x plane, and it is, furthermore, close to unity far away 
from the classical turning points. For the reasons men
tioned we get [cf. (7)1 

Ie 2~i d~ ~n[ta(2~irnY2n(X)llf2}dX 
= ~ f --.!!... [lny -1 

f 2(X)~ dx 2m dx 0 
c 

= - 8
h
rri Ie d: [lnp2(x)]dx= -~h. (8) 

Inserting (7) into (4), and using (8) with N = 00, we per
form, in an alternative way, the transformation of 
Wentzel's quantization condition into the form (6). 

USing the symmetric phase -integral approximations 
mentioned in Sec. 2, N. Froman15 has in another way 
directly derived the quantization condition in a form 
equivalent to (6). 
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We show that the generalized electromagnetic field tensor F~v and the magnetic and electric charges in non
Abelian gauge theories have little to do with the Higgs scalars and/or the dynamics of the Lagrangian. 
They are consequences of a symmetry in the theory. We present several exact static dyon solutions to the 
nonlinear classical field equations in both massless and massive Yang-Mills theories, which possess both 
electric and magnetic charges. The implications of F~v are also discussed. 

1. INTRODUCTION 

Yang and Mills emphasized that local isospin gauge 
symmetry leads to gauge fields B~ and completely de
termines the interaction dynamics of the gauge fields. 1 

Several particular solutions to the classical Yang- Mills 
field equations have been discussed. 2-5 Recently, it was 
pointed out that because of the local isospin gauge sym
metry, one can introduce a unit isovector, e. g., 1.·

a 

= r a /1', to connect the gauge field B~ and the Abelian 
electromagnetic field tensor F)J.v associated with the 
magnetic monopole in such a way that (a) F)J.v is isospin 
gauge invariant and (b) FI"v reduces to the usual electro
magnetic field tensor FjJ.v= o,.Av - o~,. if l,a= (0,0,1).6 
Because va(x) is not a dynamical quantity, the theory 
consists of kinematics and dynamics. The kinematics 
possesses the symmetry in question, the dynamics does 
not. The symmetry referred to and used was that of the 
kinematics throughout. 

In this paper, we consider the static solutions with 
B~ *- 0 and we obtain the dyon solution, having both mag
netic and electric charges. We also find an exact static 
solution B~ for which the total energy of the system is 
finite, but the solutions B~ are nonpointlike and the dyon 
carries an imaginary electric charge. It is shown that 
the conserved magnetic and electric charges in non
Abelian theories have nothing to do with the Higgs sca
lars and/or the symmetry structure of the Lagrangian. 
Rather, they are a consequence of the symmetry of the 
kinematics part of the theory. A massive Yang- Mills 
theory is also considered; it is found that in this case 
the dyon solution exists too. 

2. SPECIAL STATIC SPHERICALLY SYMMETRIC 
SOLUTIONS 

The classical field equations for the yang- Mills field 
B~ are1 ,7 

(1) 

OV B~v + N abc B~~v = 0, (2) 

(),.~==O. (3) 

We look for the static spherically symmetric solution 
of the form, 3 

Bi=E iab ll(r)B(r), i,a,b==1,2,3, (4) 

Bo= va(rlG(r), l,a(r) = r a Ir. (5) 

The constraint equation (3) is automatically satisfied. 
Equation (2) can be written as 

2B 3eB2 eG2 
o·a.B ---y ---- e2B3 +-(1 + erB) = 0 (6) 
tty- r Y , 

Introducing the variable C(r) = 1 + erB(r), we have 

(8) 

(9) 

The trivial solution C = 0 to (8) leads to the nontrivial 
special solution, 

B(r)=-I/(er), G(r)=GO/r+G1, Gu=c, (10) 

where Go and G1 are constants of integration and Go = c 
because of the requirement F,.v = FjJ.v when 1,a = (0,0,1). 

We try to find a solution B which is regular at r= O. 
By a stroke of luck, we find the following solution to (8) 
and (9) (note that here C and G can be either positive or 
negative), 

C(y) = ay/sinay, 

G(r) = i(ay cosar- sinar)/(eY sinay), 
(11) 

where a is an arbitrary constant. Unfortunately, these 
solutions are undefined as 1'_<Xl if a is real. However, 
if a is imaginary, Leo, a=i(3 with (3 real, we have an 
exact solution to Eqs, (8) and (9), 

(31' (31' - sinh(3y 
C(r) =~- or B(Y) sinh (31' er sinh(3y , 

G(r) .i (3 «(3r cosh(3r - sinh(3y), 
cr smh r 

(12) 

which can be easily verified. These solutions are regular 
at both I' = 0 and I' = <Xl. 8 We note that such a finite solu
tion for arbitrary r is possible because B~ [or G(y) 1 is 
nonvanishing. If B~ is set equal to zero, Eq. (8) becomes 
1'2d2C/d?=C(C2_1)""C3 in the regionC2 »1, say Y""Yf, 

where we have the asymptotic solution C "" /2 Yf/(Yf - v), 
I' "" ri' In this case, the nontrivial solution C(y) diverges 
at some finite 1'= V f • 5 
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On the other hand, if one looks for the static solution 
of the form 

B~=ri.f(r)/r, Bg=ga(r), 

one has the Ikeda- Miyachi solution2 

r(r)=Aa/r, Aa=integration constants, 

g"(r) = (l_~)[a'a + b'a cos( C:) + c'a sin (c:)] , 

1? = const, 

whereA=IAI, a'a=constAa, Ib'i=ic'l, and a', b', 

(13) 

(14) 

and c' form a right- handed orthogonal system, It is in
teresting to note that if Ax g if- ° the vector g appears to 
rotate around the A axis, with the angle between A and 
g constant everywhere, when we travel from one pointe 
to another point in space" 

3. LOCAL GAUGE SYMMETRY AND THE DYON 

What is the" physical" meaning of these classical 
solutions? One may regard the 6-vector B:v as com
posed by isovector "electric" and isovector "magnetic" 
fields 3 

: 

(15) 

which do not correspond to physical reality in natureo 
It would be more interesting and meaningful if B~v could 
be related to the usual electromagnetic fields" Indeed, 
this is possible because of the local gauge symmetry. 6 

We introduce a local unit vector l,a(X) (zoal'a = 1), which 
transforms like an isovector under the local SU(2) trans
formation and we construct a generalized electromag
netic field tensor F.,.v more closely rela.!.ed to F.,.v, so 
that we may actually split the 6-vector F.,.v into the usual 
electric and magnetic field associated with interesting 
objects such as the magnetic monopoles or the dyons. 
Their existence has been speculated in relation to the 
fundamenL'l1 problem of charge quantization and discussed 
by many authors. 9 To accomplish this -.!n the Yang-Mills 
theory with B~ = A'" , it is natural that F.,.v satisfi~s the 
requirements: (i) F.,.v is gauge invariant and (ii) F.,." can 
be reduced to the usual F.,.v when I,a= (0,0,1). We defines 

F.,.v = I,a B~v _ e-1 Eabc I,a(D.,.l,b)(Dvl'C), l'a = I'a(x), 

l'al'. == 1, (D.,.I,b) == il.,.l,b + CE bcd ~ I,d, 

which is indeed gauge invariant, and F.,.v = F.,.v when 

(16) 

1'. = (0, 0,1). Now, the ele~tric and the magnetic fields, 
E j and Hk , are related to F",v by 

(17) 

Definition (16) is interesting because E j and Hk in (17) 
can be interpreted as the fields produced by the mag
netic monopole or the dyons. Since 1'·1'· = 1, we may 
write (16) as 

F"," = 0", (1'. B~) - il)v"B~) - e-1 E·bcv"(il.,.l'b)(ilvI'C) , (18) 

For completeness one might mention that the compo
nents of B~ perpendicular to v' in isospace form a 
charged vector meson relative to the components of B~ 
along v' as electromagnetic field. 
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If the theory involves a scalar field cpa, one usually 
defines10 F",v in (16) with va replaced by cp·/I¢I, as pro
posed by 't Hooft. 9 We stress that the ratio ¢a / I ¢ I has 
nothing to do with dynamics, although ¢a is determined 
by dynamics, The reason is that one looks for solutions 
of the form ¢. = yO Hr), where ~(r) is the only quantity 
determined dynamically. Therefore, cpa /: cp I has nothing 
to do with Hr) or dynamics, just like the unit isovector 
I,a. Note that the form cpa = yO ~(r) is determined by sym
metry consideration alone. 

To see the sources which generate the field F",v, let 
us define the magnetic current10 

J?), and the electric cur
rent j.,.: 

I?), = ~E),p",vap F"'", 

j", = aVF",v' 

They are both obviously conserved currents, 

(19) 

(20) 

il)'k),=O, o"'j.,. =0, (21) 

and hence the magnetic charge AI and the electric charge 
Q are conserved, 

!!..A1==!!..jkorPr/(41T) = 0, 
dt dt 

!!.. Q = !!..fio rPr /(41T) = 0. 
dt dt· 

(22) 

When the fields B~ are free from Singularity lines, we 
have the identity 

E)'PJLvOP[ a" (1'. B~) - av(I'· B~) 1 = ° 
and the magnetic current k), can be written as9 

1?), == - (1/2e)E),p"vE·bc aPr' a'" rb (lvl,c. 

(23) 

(24) 

The relations (18)-(24) lwld jar arbitrary local unit 
iSOl'ector I,a(r, f), [,·r· = 1. It is striking that these re
sults are the consequence of the symmetry embedded in 
(16) and have nothing to do with the interaction dynamics 
of the system. We note that, in fact, symmetry is the 
most basic concept in gauge theories. The concept of 
symmetry leads to the gauge fields B~ and completely 
determines the interaction dynamics of B~. 1,3 In the 
same sense, we may regard the dyon as the consequence 
of local isospin gauge symmetry. 

In general, the magnetic charge M is given by 

M =J..!ho rfJr= - -8 1 !EiikE.bCa ;[1"(0 jl,b)(akl'C)J rfJr. (25) 
41T 1Te 

We require that l,a/" = 1 and that 1"(X) is single valued. 
We can write ]'1'1 as 

A1= _ ~fa(I'b 1'2' 1'3) rPr. 
81Te o{rl> 1'2' r 3) 

This equals the integration over a unit sphere in iso
space multiplied by a wrapping number n, 

(26) 

M==-(3/41Te)12 nrPl'=-n/e, (27) 
v ~1 

where n is an integer. In particular, for fixed constant 
va we have 1\,[ = 0. F or the case10 

V1 = ard A, 1'2 = r 21'3/ A, 1'3 = [(rs)2 - (ll! A, 

A = [(ar1)2 + (rzra)2 + «Ya)2 _ a2)2]1 /2, 

J.P. Hsu and E. Mac 

(28) 
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we have the total magnetic charge M = - 2/ e. In this 
context, it is worth pointing out that the magnetic charge 
density ko in (25) vanishes everywhere except at the mo
nopole position where the space derivatives of l,a have 
6 type singularities. This position corresponds to the 
zeros of the Higgs field ¢a(x), as discussed by 't Hooft. 9 

We emphasize that the form ¢a(x) = Ra(x) Hx) with R" 
= 0a3 or R a = r" / r is specified before the field equation 
for ¢a is solved. Usually we determine the explicit form 
of Ra(x) by some sort of symmetry considerations. We 
may remark that although (25) does not involve gauge 
fields one should not regard gauge fields as having 
nothing to do with the magnetic charge. 10 (See Sec. 7.) 

4. THE DYONS 

For the special type of solution given by (4) and (5), 
the definition (16) with 1,a=r"/r leads to 

E= VG(r), 

H= - r/(er). 

The fields E j and Hk related to solution (10) are 

E=-er/r, H=-r/(er). 

(29) 

(30) 

(31) 

This shows the presence of a stable dyonll at r = 0 with 
an electric charge e and a magnetic charge f[= l/e, 
satisfying the Schwinger condition eg = 1. 9 

One may wonder why such a dyon with a point source 
is possible. The answer is that the solution (10) is sin
gular at r= 0 and, therefore, the solution (10) has a 
o function type source3 S~ defined by 

S~ = iJv B~v + eE abc B~~v 

ex {E"ab 1,b03(r), J1. = 1, 2, 3, 

l'a 03(r), J1. = O. 

However, the magnetic charge f[ in (31) has nothing 
directly to do with this source S~. (See Sec. 3.) 

The solution (12) leads to the following electric and 
magnetic fields: 

E=~~(l- t3
2
? ) H=-r (32) 

e r (sinht3r)2' e-:; 
Unfortunately, this corresponds to a dyon with a point 
magnetic charge surrounded by a cloud of imaginary 
electric charge without a pointlike core. Thus, the par
ticular solution (12) is, in contrast to the solutions (10) 
and (14), not physically meaningful. 8 

The Ikeda-Miyachi solution (14) gives 

E = rk(r· g)/[r4(l- k/r)] + g/r- r(r· g)/r 

+ r(1- J?/r)eA[r. b ' sin(eA/r) - r· c' cos(eA/r)]/r4, 

(33) 

H= - r/(er) +Axr/r4. (34) 

The magnetic flux is 

jH·ds=-41T/e (35) 

because the second term in (34) does not originate from 
the magnetic charge. The electric field E is a rapidly 
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oscillating function of r as r - 0, and there is no simple 
picture for this solution. 

5. STATIC ENERGY 

If one defines the static energy Es of the system by Es 
= - LYM (where LYM is the Yang-Mills Lagrangian1

), as 
suggested by 't Hooft, 9 one has 

(36) 

which is divergent for the solutions (10) and (11). The 
Ikeda-Miyachi solution (13) and (14) also leads to a 
divergent energy. The remarkable feature of the solu
tion (12) is that it gives a positive and finite energy 

(37) 

where t3 is real. We note that direct calculation of 
the Hamiltonian1 Hs of the system shows that Hs = 0 for 
the solution (12). Also, in general t3 in (12) may be com
plex with Ret3#O. In this case, we have Es=41Tt3/e2 for 
Ret3 > 0, Es= - 41Tt3/e2 for Re{:l < 0 and Hs= O. 

6. MASSIVE YANG-MILLS FIELDS 

From the experimental viewpoint, if the dyon exists, 
it is probably massive. We wish to point out that the 
above discussions also hold for a theory involving mas
sive Yang-Mills fields ~ (x). Let us consider the 
Lagrangian12 

L = - if .. v · f"v + iM7f~ +10" UiJ" u+1iJu ¢' (iJ" + ef"X)cp 

- ~ef" • (Uo"¢ - ¢iJ"U) +ie2f~(cp2 + u2
) +ieMff~ U 

+ Mf¢ . iJ"f" - ~ W"f" + Mf¢/ ~)2, (38) 

f"v = iJ"fv - 0vf .. + ef" Xfv, 

which is, except the last gauge-fixing term with the 
parameter ~, invariant under distorted local SU(2) gauge 
transformation. 13 The Lagrangian (38) leads to field 
equations for j(x), ¢a(x), and U(x), and cpa(x) = 0 is a 
trivial solution. In analogy with (4) and (5), we setft 
= Eiabvb13(r), .fo=vaC(r), l,a=ra/r. We find that 

- 2 - 3e- - eG2 
- e2 _( 2Mf) 2 

v2B_,B_-B2_ e2B3 +-(l+erB)_-B U+ =0, 
y- r r 4 e 

2 

v 2U+ ~ (G2_ 2132)(u+ 2Mf /e) = O. 

(39) 

(40) 

(41) 

By inspection, we see that u= - 2Mf /e is a trivial solu
tion to Eq. (41), and Eqs. (39) and (40) reduce to Eqs. 
(6) and (7) respectively. Therefore, all subsequent dis
cussions hold equally well for the Lagrangian (38) in
volving massive Yang-Mills fields. 
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7. REMARKS AND CONCLUSIONS 

In the solutions (10) and (14), Bo may be zero and the 
nonvanishing B~ leads to the magnetic monopole. 6 When 
B~ = 0, the static particle like solution with positive and 
finite energy such as (12) has not been found. 5,6 We con
jecture that the nonvanishing B~ is necessary for a posi
tive and finite energy E •• 

We note that P",v in (16) is invariant under isospin 
rotation. However, when one identifies the local unit 
isovector I'" with ra / r, (16) must be understood to be 
invariant under the combined isospin and space rota
tion. 6 Also, although (16) leads to zero magnetic charge 
(i. e., reduces to the usual F/J.v) if one chooses a fixed 
constant isovector 1'" = 0a3; yet when one chooses I,a 
= r" /r and rotates it to l'a = 0a3 one will get the same 
magnetic charge e-1 with the type of solution given by 
(4) and (5). This comes about because the solution of 
Yang-Mills fields will also be rotated and become sin
gular as discussed in Ref. 10. 

The proposition of the definition (16) for the electro
magnetic field tensor is not a direct dynamical conse
quence of the Lagrangian in non-Abelian gauge theory. 
The isovector defining the gauge invariant field tensor 
(16) need not be a Higgs field but might have some other 
origin without having any dynamical nature. The local 
unit isovector l,a(X) is not a dynamical field because it 
does not obey any field equation. In Ref. 10 the con
served magnetic charge in non-Abelian gauge theories 
is regarded as the consequence of the topological struc
ture of three Higgs scalar fields in a three-dimensional 
space. However, from the above discussions, both the 
existence and the conservation of the electric charge 
Q and the magnetic charge M, as shown in (22) and (27), 
have nothing to do with the presence of Higgs scalars. 
Rather, they are related to the basic concept of local 
gauge symmetry. We note that l'a(x) is an absolute ele
ment because it is not a dynamical variable, even though 
it transforms. Thus, the local SU(2) symmetry of the 
present theory is broken due to the presence of l'"(x) 
as an absolute element. 14 This is related to the fact 
that all the quantities in a theory having transformation 
laws under a group does not mean the theory is sym
metric under the group. 15 On the other hand, 1,a(X) could 
be treated as a dynamical field by putting appropriate 
terms, i. e., t(2vl,a + efabcB~I,C)2 in the Lagrangian. This 
term combined with a constraint 1,a(xh,a(x) = const will 
lead to a mass for the gauge field B~ and the constraint 
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can be treated by the usual method of Lagrange 
multipliers. 
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It is shown that Maxwell and Wien type processes are special cases of the generalized Feller diffusion 
process. In particular, both are obtained for specific parameter values from the delta function initial 
condition solution of the generalized Feller equation. For specific values of the independent time variable, 
one obtains the well-known distribution laws of Maxwell and Wien of statistical physics. 

1. THE GENERALIZED FELLER EQUATION 

In a recent paper, 1 this author discussed delta func
tion initial condition solutions of the generalized (one
dimensional, autonomous, parabolic) Feller equation 

[(u) =A (z)uzz + B(z)uz + C(z)u - u t = 0, U =u(z, t), 

(1. 1a) 

on the domain z > 0, t > 0, with coefficients 

A(Z)=O'Z~·l, a>O, 

B(Z)={31Z~+{32z, {31,2E(-00, 00), (1. 1b) 

C(z)=pZ~-l + {32' p= A[P1 - a(1 + A)l. 

We assume in this paper that A < 1. The variable z will 
be interpreted as a length variable, I as a time variable. 
Since in the applications in Sees. 2 and 3 the parameter 
132 will not appear, we set from now on (32=0 in (1.1b). 

Because of the choice of p in the coefficient C(z), Eq. 
(1.1) is of Fokker-Planck type, Le., it can be written 
in the form ({32 = 0) 

1(11) = [A(z)ul zz - [B(z)u lz - lit = ° (1. 2) 

with 

.8(z) = 2A '(Z) - B(z) = [2a(1 + A) - ptlz~. 

The functions A(z) and 13(z) are called the diffusion and 
drift coefficients, respectively. 

Equation (1. 2) and its adjoint have the basic solution 

V(z, I; )" s) = b~ ~-~-v (l-~)/21J1+X.V (l-X)/2 Zv(2il: (l-X)/2) 

xexp(- e-A_1')H), 

in which 

1:=~1J, ~=Zb-1, 1J=yb- 1
, 

b = b(t, s) = [0'(1 - A)2(t - 5) 1 (H)l, 

t> 5)0 0, V= (1 - A)-1(0'-1{31 -1 - 2A), 

and where Z)x) is a cylinder function, L e., a solution 
of the Bessel equation 

u" + X-lUi + (1 - vZx-2 )u = 0. 

By saying that V is a basic solution we mean that, as a 
function of z and t, V is a solution of l(u) = ° and, as a 
function of y and 5, V is a solution of the adjoint 
equation. 

Using V, we form the function 

V*(z, I; v) = (1 - A)b~l-~~l-XV(Z, t; y, 0) 

= (1- A)b~1~~X-V(l-W21')oV(l-X)/2Z v(ro) 

X exp( - ~~-x -1Jb- X), 

ro = 21:0 (1-X)/2. 

(1. 3) 

in which the subscript ° signifies that 5 = 0. By writing 
Z v in (1. 3) instead of the original Zv, we want to 
indicate that we have chosen particular cylinder func
tions, namely, 

(1. 4) 

where I,v is a modified Bessel function of the first kind. 
In going from V to V*, we have disregarded the constant 
factor exp( - v1Ti/2) which occurs if we specify Z)iro) to 
be the Bessel function Jv(iro)' 

The function V*(z, t;y) is a solution of l(u) = ° as a 
function of z and t. Details and a more general mathe
matical exposition of the properties of the generalized 
Feller equation will be presented elsewhere. 

With Z" given by (1. 4) one can show2 (formula 6.643.2) 
that 

Io~ V*(z, t;y)dy 

converges since A < 1 by assumption. 

Let 0 (z - zo) be the delta function applied at zo> 0. 
We consider the delta function initial condition solution 

Uo ,o(z, L) = ~~ V*(z, I;y)o(y - zo) dy = V*(z, I;zo) (1. 5) 

of l(u)=O. 

We concentrate our attention now on the case that V* 

in (1. 5) is taken for Z v(ro)=I_v(ro) with v< 1. Then we 
may let zo" ° in (1. 5). Using the asymptotic formula 
for 1.v for small argument and observing (1. 3), we 
obtain the positive solution 

U o (z, I) == lim uo,o(z, t) 
2: 0 "0 

== 1 - A b-1 t-~-v (l-Xl exp(_ tl-~) 
r(1 _ v) 0 ~o <'0 

(1. 6) 

of l(u) = 0, which corresponds to the delta function initial 
condition applied at z=O. This means that 

u6 (z,t)+0 ast+O, z>O, 
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independent of the parameters X < 1 and v < 1. In other 
words, the solution ue (z, t) of l(u)=O corresponds to a 
completely concentrated initial state at z = O. 

Furthermore, /(0 (z, t) has the following properties: 

(1) .(·uo(z,t)dz=l, v<l (X<1), 

i. e., No (z, t) is conservative and a source solution of 
l(u)=O if v< 1 (x< 1). 

(2)1I6(2,t)~0 asz~O. 1>0, X+v(1-X)<O(X<l), 

i. e., 1t6 (2, t) is singular if X + v{1- X) < 0 (X < 1). If it 
is singular, it is also conservative (X < 1). 

(3) If 116 (z, t) is singular, then, for fixed I> 0 and as 
a function of z, 116 (z, t) has exactly one maximum which 
is located at 

2m(t) = { - O'[X + v(l - X) ](1 - X)I} (Hf
1 

(/32 = 0). (1. 7) 

zm(t) and the velocity zm(t) with which the maximum 
propagates are functions of the parameters X and v. 

2. THE MAXWELL DISTRIBUTION LAW 
In the coefficients of leu) = 0 we set X ~ - 1, 

o.==lokT/2rn, /31=-20. (~==O), where 

k = Boltzmann constant, 

T = temperature, 

m = mass of molecule, 

10 = some characteristic time. 

We observe that 10 may be expressed as 10 = Zol,~1 in 
terms of some characteristic length 20 and some 
characteristic veloCity 1'0' Then (1. 2) takes the form of 
a heat equation with constant diffusion coefficient and 
nonzero z-dependent drift coefficient, 

[tokT /2m ]/1 .. - [(I okT / m)z-lu 1. - U t = O. 

Since v = - t. the function (1.6) multiplied by to becomes 

116(2. t) = '*" b~I(lH~ exp( - ~~), 

bo(t) == b(t, 0) = (2t ~T r /2 

(2.1) 

It is of Maxwell type for every t > 0 as a function of z. 
It is singular and conservative, and 

1~u6(z,t)dz==/o. 
o 

According to (1. 7), the abscissa zm(t) of the maximum 
of the Maxwell type function (2.1) is 

zm(t) = e1mlfl'y /2 11/2 == bo(t), (2.2) 

and the propagation velocity zm(t) of the maximum is 

zm(t) == e2~Y /2 r 1 /2> O. 

If we introduce the velocity variable V=I~IZ, where v 
denotes the magnitude of the velocity vector, we obtain 
from (2. 1) for I = to the well-known Maxwell distribution 
law3 

P(v)==u5 (toV, 10 )= ~ (2:TY/2 v2exp (-2;T)v2, 

in which P(v) has the physical unit probability/velocity 
interval dr. 
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Using (2.2) with t = lo, we obtain the also well-known 
formula for the most probable velocity vI>' 

vI> == t~1 zm(to) = (2kT /m)1 /2. 

The indicated transformation of variables may be 
directly applied by setting u(Z,t)=U(I',t), 2==10 /), and 
leads to the equation 

kT [kT -I] 
2mto Uvv - mto l' U v -Ut=O. 

3. THE WIEN DISTRIBUTION LAW 
In the coefficients of leu) = 0 we set now X = 0, 

Q==2rrckT/woPl, /31=-20' (/32=0), where the meaning 
of k and T is the same as in Sec. 2 and where 

c = velocity of light, 

n=Planck's constant, 

Wo = some characteristic frequency. 

Then (1.2) reduces to the special Feller equation 

[
2rrCkT] 8rrckT _ 0 
--Pl- zu - --Pl-uz - ut - • 

Wo zz <Lb 

Here v=-3, and (1.6) multiplied by 12(kT)4/rrw~c2n3 be
comes 

u6 (z, t) = [2(kT)4/rrw~cW]b~I(t)~g exp(- ~o), 

bo(t) == b(t, 0) = (2rrckT / wo1f}l, ~o = Zb~l(t). 

(3.1) 

This function is of Wien type for every I> 0 as a func
tion of z. It is singular and conservative, and 

f u6 (z, t)dz = 12 (kT)4/ rrw;c2ff. 
o 

From (1. 7) follows the abscissa of the maximum of the 
Wien type function (3,1) as 

(3,2) 

which implies that the propagation velocity of the maxi
mum is identically constant, 

zm(t) = 61TCkT / won> O. 

We introduce now a frequency variable w by setting 
Z=27TCW~2W. Then, for t==w~t, we obtain from (3.1) the 
well-known Wien distribution law (limiting case of the 
Planck law for high frequencies) (Ref, 3, p. 173), 

Q (w) =uo (2rrcw~2w, W~l) = (n/7T2c3)w 3 exp(- n/kT)w, 

in which Q(w) has the physical unit energy density/fre
quency interval dw, 

By means of (3.2), the most probable frequency wI> is 
obtained as 

wI> = (W~/27TC )zm(w~l) = 3kT In. 

Carrying out the change from z to w in the original 
equation, we obtain 

wokTn-1wUww - 2wokTn-1Uw - Ut =0, 

IS.H. Lehnigk, J. Math. Phys. 17, 973 (1976). 
21. S. Gradshteyn and 1. M. Ryzhik, Tables of Integrals, 
Series, and Products (Academic, New York, 1965), 4th ed., 
formula 6.643.2. 

3L. D. Landau and E. M. Lifshitz, Statistical Physics, Course 
of Theoretical Physics, Vol. 5 (Pergamon, London, 1958), 
p. 83. 
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It is proved that there are no spherically asymmetric solutions of the Fermi-Thomas equation 
v'( u I r) = ( u I r)3' 2~, where ~ is unity inside the surface u = 0, and zero otherwise. This is proved by 
showing that the boundary conditions on u at the origin and on the surface at infinity necessarily lead to 
unphysical discontinuities in u at the surface u = 0, except for the case where u is spherically symmetric. 
A simple, only approximately statistical model is presented, which may replace the Fermi-Thomas model 
for asymmetric systems. 

I. INTRODUCTION 

The statistical model of Fermi! and Thomas 2 is a non
empirical method of determining atomic properties, 
which has been applied to several problems in atomic 
physics. It has been used with some success to calculate 
interatomic and interionic potentials, and also to cal
culate atomic energy levels and wavefunctions. 3,4 It is 
particularly useful for obtaining approximate wavefunc
tions for moderately excited single electron terms, as 
a complement to the Bates-Damgaard5

,6 method. It has 
also been used to calculate wavefunctions for any elec
tron in a many-electron atom or ion, by providing an 
effective potential for the electron in question. The main 
advantage of the Thomas-Fermi method is that it is 
rapid and may be extended over the whole range of en
ergies available to a bound electron. The self- consistent 
field methods of Hartree or Hartree- Fock are practic
able only for the lower lying states, and the long numeri
cal iteration schemes may be justified only by the in
creased accuracy of the results, compared to the 
Thomas-Fermi (TF) method. 

In all these applications, the TF potential is chosen 
to be spherically symmetric. This has the obvious ad
vantage of simplicity, and of giving a potential with no 
parameters to adjust (or at most one). 4 For single elec
tron levels, this choice corresponds with the expected 
state of the core on which the tower of single electron 
terms is built. On the other hand, if it is known that the 
core for such a tower of states is asymmetric, the use 
of asymmetric TF potentials suggests itself, especially 
for comparing corresponding states in towers built on 
different cores. In fact, many of the tabulated atomic 
states 7 form towers of single electron levels built on 
asymmetric cores. A typical example is neutral oxygen, 
where all but a very few of the tabulated levels belong 
to one of three towers: 

lOt) = 1 45so/ 2, nZ), 

102) = 12DsO/2' nl), 

lOs) = 12P so/2' Ill) . 

(1.1a) 

(1. Ib) 

(1.1c) 

The cores for these towers correspond very closely with 
the ground states of nitrogen and OIl. 

Atomic cores may be asymmetric for a number of 
reasons, most obviously angular momentum specifica
tion and configuration interaction. The asymmetry is 
intimately related to the shell structure of the atom, 

stemming mainly from the imbalance in electron confi
guration in unfilled shells, and generally decreases with 
the number of electrons. Now the TF equation contains 
only a statistical assumption, and has in it no informa
tion on shell structure. (This is its main advantage). 
Consequently, it is probably a poorer approximation to 
the core, the larger the asymmetry is. On the other 
hand, it is not unreasonable to expect that if the asym
metry is not too large, the TF equation may still be a 
sufficiently good approximation to give useful quantita
tive results. Asymmetric TF potentials would be of phy
sical interest in this context because of the simplicity 
and rapidity of their application. 

Here the results of an investigation of asymmetric 
TF potentials are presented. An analytic theorem is 
proved, that the only solutions which satisfy the physi
cal boundary conditions are those which are spherically 
symmetric. This somewhat surprising theorem is re
markable because such proofs for nonlinear differential 
equations are quite rare. The theorem shows that the 
lack of physical information in the TF equation is fatal; 
there are J/O asymmetric solutions. The potential of an 
asymmetric core must be obtained otherwise. Whereas 
this potential certainly does not satisfy the TF equation, 
it may satisfy an equation which differs from it by terms 
which are small, in some sense. Such asymmetric po
tentials would be only approximately statistical. 

The next section reviews the TF model and proves the 
theorem, and the last section suggests a simple approxi
mately statistical model of asymmetric cores. 

II. THE THOMAS-FERMI MODEL 

The TF model of atoms and ions is well knownB and 
will only be reviewed here. In terms of the rescaled co
ordinate x, 

where 

a= (31T /4)2 /S(2Z1 /S)-l 

the potential is 

Ze (u(X) ) v=--- --+c , 
41TE oarlo x 

where 11 satisfies the TF equation 

\72(II/X) = (11 / x)S /2 '" p. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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The constant c represents the maximum energy that 
electrons in the ion may have; for c = 0, there is no net 
charge, and the model describes an atom. The charge 
density, p, is normalized such that 

Z rpd3x=N~Z, (2.5) 

where N is the number of electrons in the atom. The 
boundary condition at x = 0 is 

11(0) = 1. (2.6) 

The boundary of the atom is that surface where the 
charge density vanishes. [The existence of this surface 
is actually an assumption based on physical considera
tions. However, its existence is shown below to follow 
from the condition in (2.5). ] It is defined by 

II(-,s) =0. (2.7) 

Clearly (2.4) requires /I to be positive inside this sur
face, and therefore the gradient of /I is negative at the 
boundary -' s' 

n· v/ll s '" O. (2.8) 

Outside this surface the potential satisfies Laplace's 
equation 

(2.9) 

subject to the boundary condition that at large distances 
the potential tends to zero. Namely 

limll=- elxl +q+o(1/lxl), (2.10) 

where q is the total charge on the ion, 

q=l-N/Z. (2.11) 

Across the surface /I = 0, the potential and its gradient 
are continuous. The possibility that there may be a sur
face density of charge is rejected as unphysical, since 
at the boundary there is no phase space available, and 
p is regarded as a smooth function away from -' = O. 

The model is investigated here by considering two 
particular curves which extend out from the origin to 
infinity, along which /I satisfies a differential equation 
with certain useful properties. The positivity of 11 and 
p is crucial to the argument, which shows that the bound
ary conditions on the derivative of Ii are not satisfied 
simultaneously at the origin, boundary, and at infinity, 
unless the solutions have spherical symmetry. 

Consider the region where (2.4) applies, and assume 
that it contains no absolute maxima or minima in u, with 
the exception of the origin itself. Since u is continuous 
and single-valued, the surfaces 

11= const=JI,I (2.12) 

do not intersect each other. These surfaces cannot ex
tend to infinity since then the total charge carried by the 
electrons diverges. The surface If = 0 is a possible ex
ception to this and may be at infinity. Consequently, the 
surfaces (2.12) are all closed, and therefore must con
tain an absolute extremum of u. By assumption, the 
origin is the only such point, and therefore it is en
closed by all these surfaces. 

If the surfaces are ordered according to their mini
mum distance from the origin, Rml .. then a sequence of 

107 J. Math. Phys., Vol. 18, No.1, January 1977 

the M values associated with each surface is defined. 
This sequence must be monotonic, since otherwise at 
least one extremum of M (Rml.) exists, and on that sur
face u must be an absolute extremum, violating our as
sumption. In addition, M must be monotonically decreas
ing. For, if it were increasing, it would start from 
unity at the origin and increase, always remaining great
er than unity. Again the charge would diverge. Thus M 
must decrease monotonically from unity at the origin, 
remaining positive everywhere. Thus on each surface u 
= M, the gradient of u is negative. 

n.VuIM-"'o. (2.13) 

Equation (2.8) is a special case of this formula. 

On each surface there are at least two points where 
the distance from the origin is an extremum. The set 
of all these points form at least two lines extending 
from the origin out at least as far as the surface 11 = Mo. 
If, due to a symmetry of II, there is a degeneracy, it 
may be removed by choosing one of the lines of minima 
and one of the lines of maxima. By defining, in general 

(2.14) 

it is shown in Appendix A that along the line of maxima, 
where u is denoted w, w satisfies the following equation: 

d2w/dr =/(10) - Pi dw/dr, (2.15) 

where Pi is a positive definite function, which is zero 
only if the surface II = Mlo whose maximum distance 
Rmax is r, is spherical, and r is the distance of the point 
on the curve from the origin (not the distance along the 
curve). Similarly, along the line of minima, where /I 

is denoted 1', /' satisfies 

(2.16) 

where P2 is positive definite, and is zero only if the 
surface II =M2, whose minimum distance Rml • is r, is 
spherical. It is important that / for the TF equation is 
positive definite. By solving the TF equation for x < xO' 

where -'0 is small but finite, Appendix B derives the 
boundary conditions on these functions: 

dO) = w(O) = 1, (2.17) 

dz' dw 
-(0)=-(0)=-..,,-. 
dr dr 

(2.18) 

From the discussion preceding (2.13), g is a positive 
quantity, and the derivatives of wand I' are either nega
tive or zero. 

This system of equations gives the function u on two 
curves. At a given value of r it is clear that 

(2.19) 

and since these functions satisfy identical boundary con
ditions at r = 0, it follows that 

dw/dr? dl'/dr (2.20) 

and 
w(r)? 1'(r). (2.21) 

The equality holds if and only if Pi =P2 = 0, which is the 
spherically symmetric case. 

The possibility that 11 has absolute maxima and mini
ma may be discussed using these equations. It is proved 
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here that such extrema do not exist, so that the initial 
assumption of their absence is exhaustive, covering all 
cases of physical interest. An extremum may take one 
of two forms; either lying on a closed surface, or lying 
on an open surface, a line or at a point. In the former 
case the gradient of /I vanishes on the closed surface 
and from (2.15) and (2. 16) it follows that 11 must be a 
minimum on the surface, U = /lmln' Outside the surface It 
" II mln and the charge (2.5) diverges unless there is a 
maximum beyond the surface, so that II turns over and 
may tend to zero. In the latter case, the set of points 
where II is extremal are enclosed in closed surfaces, 
II = 1'1'/. (If M < 1 then the surfaces 11= M may consist of 
two or more disjoint closed surfaces, one enclosing the 
origin, the other the extremal points of II.) There is an 
extremal line associated with these surfaces which sat
isfies (2.15) before the extremum is reached and (2.16) 
beyond the extremum. At the extremum the gradients 
vanish, and hence beyond the extremum (2.15) requires 
II to increase. Therefore, all such extrema are minima. 
However, if /I' - 0 and is increasing with r, then the 
charge diverges, unless a maximum is reached so that 
II may turn over and tend to zero. Thus, in all cases, 
whatever the form of the extremum, only minima exist, 
and the finiteness of the total charge requires that there 
are maxima beyond each minima. (Without such maxima 
1/ never reaches zero and remains finite as x _ cO. ) 

Therefore there are no extrema of /I at all, other than 
at the origin. 

The finiteness of the charge of the electrons requires 
that /I go to zero at some finite surface or that /I goes 
to zero faster than y-3 /2 at infinity. Thus the existence 
of the surface 11=0 is established. 

In the case that the boundary surface 11 = 0, is not at 
infinity, the previous discussion may be applied to the 
region outside this surface, where f = O. The equations 
corresponding to (2.15) and (2.16) may then be integrat
ed once to obtain the derivatives of II' and 1': 

dll'/dr=nw/drIR exp(- (RT Plnr), max .h max 
(2.22) 

(il'/dr=ri1'/(lJ-iR I exp ((,RT P2 dr ). m n . min 
(2.23) 

where Rmax and R mln refer to the boundary surface. On 
letting r- 00 and using (2.10), one finds 

dll'ldrl R < - C max 
(2.24) 

and 

(2.25) 

The equalities apply, as usual, only if 11 is spherically 
symmetric, outside the surface. 

The final step is to match the boundary conditions at 
the boundary. From (2.20) and the positivity of the sec
ond derivative of H', it follows that 

(2.26) 

But from (2.24) and (2.25), 

dw/nrlR "",dl'/driR I' (2.27) max m n 

These equations are inconsistent unless the equalities 
apply, namely only for the spherically symmetric case. 
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If the boundary surface is at infinity, then the finite
ness of the charge requires that the derivatives vanish 
faster than x-5 /2 at infinity. Then 

R
lim dw/drl R m"" - d1'/dr I Rmln = O(R mln )-5 /2, (2.28) 
min- 0Cl 

where these variables refer to the surface /I = M and 
the limit is equivalent to !Vi - O. But from (2.19) and 
(2.26) the left hand side is necessarily an increasing 
function of R m1n • Again the boundary conditions cannot 
be satisfied except for the case of spherical symmetry. 

The only possibility not covered by these two cases is 
that where the boundary surface has a finite R ml .. but 
infinite R m"". This case is highly unphysical, due to the 
enormous asymmetry, and one does not expect the TF 
model to apply. However, mathematically. it may be 
considered as a limiting case of a finite boundary, in 
which case the above analysis applies and shows that 
such solutions do not exist. 

This completes the proof of the absence of spherically 
asymmetric solutions of the TF model. 

III. DISCUSSION 

The arguments presented here may be adapted trivial
ly to the more general case 

(3.1) 

where l! is any noninteger number. The crux of the proof 
is the positivity of the right-hand side and the positivity 
of 1>. It does not apply to complex solutions of (3.1). 
Because the potential is coulombic around its only sin
gularities, it must be spherically symmetric every
where. This phenomenon is well known for linear differ
ential equations, and has now been extended to the sys
tem (3.1) also. 

The problem of determining the potential of an asym
metric atomic core cannot be solved using the TF mo
del. However, a simple procedure for obtaining an ap
proximately statistical potential is to perform an angle 
dependent scale transformation on the spherically sym
metric solution IIs(r). Then 

IIp(X, 8, ¢) =lIs( XfTJlmYlm(8, ¢)) (3.2) 

in a simple generalization of the technique of Ref. 4, 
where only TJoo is included to obtain a one-parameter 
semiempirical model. This procedure has the attractive 
feature that in the limit where the asymmetry vanishes, 
the potential satisfies a model which is remarkably 
accurate. 4 

APPENDIX A 

In spherical polar coordinate (x, ~j) the gradient of a 
scalar function u is 

'\7u = n{u~ + f(hjlU!/} 1 /2 

=nun , (AI) 

where n is the unit normal to the surface u = const. 
Similarly 

xv2(u/x) == v 2u - (2/x)l1. 

==(K+n·V)u.-(2/x)u.. (A2) 
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where 

K=divn. (A3) 

Along the surface It = const, the extrema of x are given 
by U(i = 0, and at such an extremum 

xVZ(u/x) = lIxx + (K - 2/X)II,. (A4) 

If l( ~i) is a solution of the equation 11= const, then the 
extremal value of l is obtained by varying ~i: 

(A5) 

Therefore at the extremal 

(A6) 

and 

(A7) 

where 1) is positive at a maximum of l and negative at 
a minimum. Writing the angular coordinates of the ex
tremum as ~i(R), where R is the extremum, gives the 
identity 

u(i(R, ~i(R))=O. (AS) 

Differentiating with respect to R, we have 

u1,(i +Utitjd~j/dR=O (A9) 

at all points along the curve defined by ~i (R). These are 
the extremal curves of the text. If U(R) is defined by 

U(R) =u(R, ~i(R», (A10) 

one obtains 

(All) 

along the maximal curve, where (A9) and (A4) have been 
used, and! is defined in the text (2.14). Now K is re
lated to the curvatures of the surface u = const at the 
extremum, namely 

(A12) 

where rc is a mean radius of curvature. 9 At a maximum 
rc < r and at a minimum rc ~'r. Then the function 

p(R) = K- 2/R + 1) (A13) 

is positive definite at a maximum and negative definite 
at a minimum. Thus along a curve of maxima 

(A14) 
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and along a curve of minima 

VRR =!+Pz(R)VR • (A15) 

If Pi (R) or pz(R) vanishes, then the surface is locally 
spherical up to order (6~)3, as may be seen from (A5). 
However, l(~) satisfies a second order differential equa
tion on the surface u = const, and if both first and second 
derivatives vanish at some point, then l(~) is a constant. 
Therefore the condition for sphericity of the surface 
11 = const is 

(A16) 

APPENDIX B 

Near the origin write 

11 ==110 +X6!lmxIYlm, 
1-1 

where Uo satisfies the symmetrical equation 

u~ =X-l/211~/2 

(Bl) 

(B2) 

and expand the left-hand side of (2.4) to obtain the lin
earized equations 

(B3) 

The radial functions are expanded in a power series in 
Xl/2, and have the form: 

Then, near the origin 

11, = _ g + O(xl 12) 

and is spherically symmetric. Therefore, 

dw(O) = dV(Ol=_g. 
dr dr 
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A classical perturbation theory· 
Charles Schwartz 

Department of Physics, University of California, Berkeley, California 94720 
(Received ~7 August 1975; resubmitted mUl1uscript received 5 J~lllIary 1976) 

A compact formula is found for the perturbation expansion of a general one-dimensional Hamiltonian 
system in classical mechanics. The technique is also applied to the mathematical problem of functional 
inversion. 

PERTURBATION THEORY FOR CLASSICAL 
MECHANICS 

We consider a system with one degree of freedom, 
with the Hamiltonian H =H(p, q) being independent of the 
time I. We assume that we have bounded, periodic 
motion at some value E of the energy. That is, the 
equation E = H(p, q) describes a single closed curve 
(the orbit) in the jJ-q plane (phase space). Now con
sider the integral 

T=J (dpdqo(E-H(P.q)), (1) 

involving the Dirac delta function; the domain of the 
integral is to include the orbit. We shall first show that 
this integral T is equal to the period of motion at en
ergy E. 

Doing the integral over p, we get 

T~ fd"!;i ~ CH~~. 'I) i .. )~. (2) 

where Pm are all points satisfying E =H(Pm, q) for fixed 
q. But we have from Hamilton's equation of motion 

and we then see that the expression T is just 

f Ii? = i dl=T(El, 
E q J E 

where the integral goes once around the orbit. 

(3) 

(4) 

We can thus express the time average of any function 
F of the dynamical variables taken over the orbit at 
energy E, as 

(F;E) = T~E)ff dpdqO(E-HlF(p,q). (5) 

Now, for the perturbation theory, suppose that we are 
given H = H 0 + >JIl and we seek an expansion in powers of 
A. The basic step is to regard E as an independent vari
able and then write the Taylor series expansion, 

~. 1 ~ d )" o(E - Ho - >JIl ) = L. - - >JIl - o(E - Ho), 
":0 nl dE 

T(E) = ~ (~t)" (dd
E
)1 f dp dq(Hl(p, q))"o(E - Ho) 

;:. (- A)" (d )" 
= ~ --;:zy- dE To(E)(H'{; E)o· 

(6) 

(7) 

Here, the subscript "0" means that the averages are 
performed over the orbit of the zeroth-order Hamil
tonian Ho. This formula is very compact; its evaluation 
involves only the operation of integration over the un-

perturbed orbits, followed by differentiation with re
spect to the energy. For comparison, one may look at 
the formulas obtained in "canonical perturbation theory" 
(see, for example, Saletan and Cromerl). That analysis 
is based upon the action-angle formalism (our result 
can be reexpressed in terms of action-angle variables 
but there is no particular advantage in doing so) and ap
pears as an expansion for the energy E, thought of as a 
dependent variable; the expansion formula is there 
worked out only to second order in A, and the form is 
quite messy in appearance. 

We also get the formula 

(E) /. :'-. (- A)" ( d)" ( )( " . T \F, E) = f:o -11-1 - dE To E H1F, E)o· 

We will compute some examples based upon the 
harmonic oscillator, 

H = E~ + ~(2 o 2111 2 'j , 

which has the solutions (at energy E) given by 

q = nEIl? sin(wol + <P), Wo = ,.jk/m, 

p = v'2l!m cos(wol + <P), 

To(E) = 21T /wo (independent of E). 

1. Consider the perturbation Hamiltonian Hl = I q i a 

1 /2' (2E)"0/2 
(H'{; E) = 21T 0 de Ii' I sinel "a. 

(8) 

(9) 

(10) 

(11) 

This integral may be evaluated and the derivatives with 
respect to E are likewise easily evaluated; the result is 

For a = 2 we get the familiar result, 

T(E)- 21T £ (n-ill 
- w ":0 (- ~) 1 II 1 

_ (--.!!_7 ) 1 /2 
- 21T k + 2A . 

/- 2A)" = ~1T (1 + 2A) -1/2 

\ k Wo k 

(12) 

Having this series explicitly given, we can ask about 
its radius of convergence. The ratio of successive 
terms, for large n, is 

_-Aa(2E a )(0-2)/2 
R -----

" k k a-2 
(13) 

and thus we will have convergence up to that value of the 
energy E for which this ratio is 1. We now ask for the 
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significance of this critical value of the energy, 

\ 
k(o-- 2)(- 11.0-) 2 12..(J I 

E*- -- - I - 2 0- k . 
(14) 

It can be readily shown that at this energy the orbit 
reaches an amplitude at which the total potential energy 
has a zero slope and the motion thereafter is qualita
tively different. Thus we conclude, at least for this 
example, that the perturbation series will converge 
for all energies for which the period is a finite and con
tinuous function of the energy. (In this we must allow 
for changing the sign of A.) 

2. Consider the perturbation 

H =!!'q3+!!'q4+E. q5+r!:. q6+... (15) 
I 3 4 5 6 • 

We calculate 

T(E)wo=l + ~ (-~b+ E a2 )+ E2 (_ Ed+ 105 b2 

27T k 2 4 6 k kf 4 64 k 

+ 1 ac _ 105 a
2
b + 385 a

4)+ 0(E3) (16) 
2 k 16 k 2 144 k 3 , 

which gives the leading energy dependent corrections to 
the period of a general nonlinear oscillator. 

APPENDIX 

The expansion technique used above finds application 
to some problems removed from Hamiltonian mechan
ics. Consider a given function F whose inverse is 
sought: 

y =F(x), x=rl(y). 

We assume that F is a monotonic function, so that this 
inverse is unique, Now suppose we have F= Fo + AFI, 
where A is again a small parameter, We would expect 
to find an expansion 

p-I(y):= Fo-Ib') + 6 A"G"e)'), 
11=1 

where the terms G" could be found by a lenghy process 
of Taylor expansions, What is somewhat qurprising is 
that we can find a compact formula for the general 
term in this series, 

Again, starting from the integral of a delta function, 
we have 

(dx o(y _ F(x» = -~ - \ = dx = A p-I(y), J I F (x) x.rl (y) dy dy 

Substituting F= Fo + AFj, we make the Taylor series 
expansion of this same integral to get 

t (- ~)" (dd )"fdx o(y - Fo(x»Ft"(x), 
11=0 n. Y 

Equating these two expressions, and then performing 
one integral in y, we get 

F-I(y) = Fool(y) + t (- ~)" (A) "01 (Ft,(x»" l ' 
,.,1 n. dy Fo(x) x.Fiil(y) 

Again, the trick in finding this compact formula was 
to regard y, and not x, as the independent variable. 
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For one simple example of application of this formula, 
consider 

we find the inversion: 

X:=yl/~+f; (_A)" I.d)"ol~1 
. ..I n! \dy ax .. -1 X~ylla 

1/""'( (Jl-a)/,,)" (n{3/a+1/a-1)! 
-y L' - 11.1' { / 
-. ..0' n!a n[({3- 0')/0']+1 a}!· 

This series is readily seen to be convergent up to that 
point at which dy/dx becomes zero for either sign of A. 

Now consider extending this technique to functions of 
several variables: 

y;=F01(X)+AFlj(X), X=(Xj,X2, ... ,XN), i=l,N, 

where we wish to solve for x. in terms of the y J. For 
simplicity we take the function Fo to be the identity 
function: 

Yi =x, + A<P.(x) 

[later, one can set Xi = F o, (z) to recover the more gen
eral case]. Now consider the following integral: 

/fo~1 ••• d~N O(YI - ~I - A<PI W) " . ob' N - ~N - A<P N(~» 

. det \ 0" + A a~I~~S) \ . Gm. 

by changing integration variables from the ~i' s to 

11,:= ~I + A<plm, 

we see that this integral has just the value G(x) where 
x, are related to y, by the equations given above. (The 
determinant is the Jacobian which is needed to make 
this transformation work out simply.) 

Now we use the Taylor series expansion, as before, 
using the variables Y i to expand the arguments of the 
delta functions in power series in A: 

This general formula is not exactly in the form of a 
power series in A because the determinant is an Nth 
degree polynomial in A; but it is the most compact form 
of the functional inversion problem for several varia
bles. Using the equation that results from setting G(x) 
= 1, we can rewrite the general formula as 

G(X) = G(y) + t (-AI )" 
.. I n 
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xdetlo +A~ I 
Ii a.Vi' 

involving the commutator of G with the derivative 
operators. 

For the case N = 1 we have 

G(X)=G(y)+E (-n~)" [(:vy,G(Y)}~"(Y) 

x [1 + A o¢'(y)] l' =X + A¢'(x) a.r ,. , 

and this can be rearranged into a strict power series 
in A, yielding 

G(x) = G( r) + t (- A)" (1..) n-I ¢'"( v) aG(y) • 
. ".1 n! a.v . ay 

This formula is equivalent to our earlier result on 
function inversion with one variable. This formula was 
first published by Lagrange in 1770 (see Whittaker and 
Watson2 ; the derivation given there does not use delta 
functions and has the added virtue that one can more 
readily see what the radius of convergence of the series 
will be). The formula we have given above for several 
variables is, as far as we know, new. For N = 2 the 
series can be rearranged and, with some care, we 
obtain 

YI =xI + A¢'I (Xt> X2), .\'2 =X2 + A¢'2(xt> X2), 

G(x\>X2)=GC"I,.\'2)+t (_A)" 0 -1\ _/ll/~~)'I"I(~~)'2"1 
".1 'I +'2'" I' 2' \V) I v) 2 
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X[02G( v" 1'2) + aG(y" V2) II ~~.1.L1:1.2 
0YI aV2 aYI 0Y2 

+ oG(VI,j'2) 1 01n¢'2(YI,Y2)]¢"I(V V )¢,'2(V \,) 
0Y2 2 aYI I . \>. 2 2 . \>. 2 

of which a special case is 

xl=VI+0(-A)"0---- - - ¢'~.:..:t:L. .. 1 (0)""'"1(0)'01 CI"'~o' 
. ""I I 11 (n -1)! 0YI oyz aY2 

For another special case consider the linear forms 
N 

¢' i (x) = 6 AfJx i for any N. 
i-I 

Then, taking G = 1, we find the formula 

1 .. (- A)" 
-d-et:-:(~l '-+-AA-:-:") = ~ -n-! -

XA'lkl,A'2k2"" ,A'nk"' 

where the set of labelS (k l , k2' ••• ,k") goes over each 
permutation of the set (1,,12, ••• ,1"). 

*This work was supported by the National Science Foundation 
under the Grant Number MPS 74 08175 A01. 

lE.J. SaleHn and A. H. Cromer, Theoretical Mechanics 
(Wiley, New York, 1971), p. 241. 

2E. T. Whittaker and G. N. Watson, A Course in Modern 
Analysis (Cambridge U. P., Cambridge, 1958), p. 13:3. 
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Gleason measures on infinite tensor products of Hilbert 
spaces 

Mark J. Christensen 
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Nowak [Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 22, 393-5 (1974)] has given an example of a 
consistent (in the sense of Kolmogorov) family of Gleason measures [A. M. Gleason, J. Math. Mech. 6, 
885-94 (1957)] ! mn l defined over ® 7 ~ [Hi which do not extend to a Gleason measure on ®:"'~ [ <to Hi for 
a given construction of the infinite tensor product. In this paper we show: (I) In the example of Nowak it 
is not necessary to assume, as is done, that the H, are infinite dimensional. (2) That every consistent family 
developed from pure states, which is the type considered by Nowak, extends over the complete infinite 
tensor product of von Neumann [Compositio. Math. 6, 1-77 (1938)]. (3) Even if each Hi is two
dimensional and the complete infinite tensor product of von Neumann is used, it is possible to give a 
simple counterexample to the conjecture that every consistent family of Gleason measures extends by the 
use of non pure states. 

1. INTRODUCTION 

A Gleason measure is a function m from the collection 
C of closed subspaces of a Hilbert space H into the unit 
interval, countably additive on orthogonal decomposi
tions, with m (P) = 0 < m (H) < 00. Gleasonl has shown that 
every Gleason measure m can be represented as m(E) 
=Tr(MPE ), where Tr denotes trace, P" is the projec
tion operator of the closed subspace E, and M is a 
bonded, positive, self-adjoint, trace class operator on 
H. It is evident that every such operator with trace 
equal to 1 will likewise yield a Gleason measure. 

The most elementary case of a Gleason measure 
occurs when M is the projection onto a one-dimensional 
subspace of H. In that case m is referred to as a "pure 
state, " this terminology arising from the quantum 
mechanical origins of the subject. 

Jajte has asked if there is for Gleason measures on 
tensor products of Hilbert spaces a theorem analogous 
to the well-known Kolmogorov extension theorem for 
probability measures on cartesian products. Nowak2 

has recently given an example to show that a consistent 
family of Gleason measures need not extend on a given 
construction of the infinite tensor product. In Sec. 3 of 
this note we show that for the case of products of pure 
states, such as considered by Nowak, there is always 
as extension Gleason measure on the complete infinite 
tensor product of von Neumann which, considering the 
quantum mechanical origins of the subject of Gleason 
measures, is the natural setting for the consideration 
of such questions. In Sec. 4, with an eye towards more 
general Gleason measures, the properties of operators 
on infinite tensor products are given. Finally, in Sec. 
5, we show that a completely general family of product 
Gleason measures will extend over the complete infinite 
tensor product of von Neumann if and only if a condition 
of "asymptotic purity" is obeyed. It therefore follows 
that, even if each Hn is two-dimensional, it is possible 
to give a counterexample to the conjecture that every 
such family of Gleason measures has an extension. 

2. TENSOR PRODUCTS OF HILBERT SPACES 

Let N denote the positive integers, and let {Hn}nE=,y be 

a family of complex Hilbert spaces, with ( 0, n) nand 
11 0 lin denoting the inner product and porm of Hn , respec
tively. The finite tensor products 0~lHn are defined in 
the usual way, as being the completion with respect to 
the inner product 

[2:~ Y~,L~ Z/l..=L A (Y~'Z::>n 
1: n=l h ~l J k tn n::::} 

of the linear span of the functionals 

(i Yn}X) = n~l (xn, y) n' 

where x = (Xl' ... ,xp)' 

To define von Neumann's complete infinite tensor 
product (cf. Ref. 3), we proceed as follows. Denote 
by L':. the set of all X'=: xn'=:NHn such that 6n: 1

1 IIxnlln - 11 
< 00. By 0:=1)'n' with {Vn}'=: L':., we shall mean the bounded 
functional on L':. defined by 

( 0 Yn) (x)= n(xn, 'vn)n' 
n=l n::::l 

where the infinite product is quasiconvergent in the 
sense of von Neumann. 

Definition 1: 0:'1 H n is the completion of the linear 
span of all bounded linear functionals of the form 0:=1 Yn 

with respect to the inner product 

[1:: 0 y~ , L ® z~J = L: Ii <y~, z~)n' 
k n=1 n=l k, h n=l 

This definition is, however, only one of many, The 
definition currently receiving the greatest usage is that 
of the algebraic tensor product. 

Definition 2: Let q. ={e~ be a sequence of unit vectors, 
with e~ E:: Hn' Let L':.~ = {x E:: ><:1 Hn : Xn * e~ for only finitely 
many n}. The Hilbert space obtained by completing the 
linear span of the linear functionals 0:1Yn with Y '=: L':.~ 

with respect to the inner product [', .] is called the 
infinite tensor product of the Hn constructed about cp and 
is denoted by 

Each 
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is a subspace of g;'1 Hn' Furthermore, von Neumann3 

has shown that these subspaces decompose ®:'1 Hn into 
mutually orthogonal subspaces. 

3. A KOLMOGOROV EXTENSION THEOREM FOR 
PURE STATES 

Now let {H n} be a countable family of Hilbert spaces 
as before, For each 11 let mn be a pure state on Hn• 
Let en be the unit vector of Hn which represents the 
st!lte m n, Then, for every P. ®!.len is a unit vector of 
®~d Hn and hence defines a Gleason measure ®~dmn 
over that p-fold tensor product. 

The proofs of Propositions 1, 2, and 3 are given in 
the Appendix. 

j>roposilioll 1 (1 of Ref. 2): The family {®~=lmn' 
®~=IHJp is c0l!sistent in the sense that if E is a closed 
subspace of ® ~=I Hn. then 

We remark that Proposition 1 is true for arbitrary 
Gleason measures. The following proposition is then 
the Kolmogorov extension theorem for pure states. 

ProposilioJl1!: The family {®~lmn' ®~=IHn}p has an 
extension tOg':1 Hn. namely that Gleason measure re
presented by the unit vector ,Y:' ;=1 en' That is. there 
exists a Gleason measure m on ®:=IHn satisfying 

m(E0(~pHn)) =~:mn(E) 
for every p and closed subspace E of Y:' !~i H n' 

The next proposition gives the criterion for the 
extension to lie in any particular construction of the 
infinite tensor product. 

Propos ilion 3: Let 4> = {e~}nN be a sequence of unit 
vector with e~ E Hn and let 

~ II>H ® n 
n=1 

be the algebraic tensor product constructed about 4>. 
Then the consistent family {0~lmn. G~IHJPEN has an 
extension to 

;;; II>H 
<21 n 
,.,1 

if and only if 

for some L. 

We remark that in the example of Nowak2 (en,e?>n=O 
for all n> 1. 

4. TENSOR PRODUCTS OF OPERATORS ON 
HILBERT SPACES 

Let {Hn}nEN denotes a countable family of separa~le 
Hilbert spaces over the complex numbers Z. Let ®!=IHn 
be the tensor product of HI"" ,Hn defined in Sec. 2. 
Further let Vln}nC=-N be a family of bounded linear 
operators, each An mapping Hn into its~lf. Then we 
may define3 an operator ®~=IAn from ®~=1 Hn into itself 
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by the formula 

P 
=e 

n=l 

This operator may then be extended by linearity to the 
comple]i0n ®~=IHn' The operator 0~=IAn will be bounded 
over 0 n=1 Hn with norm 

The trace of this operator is likewise given by formula 

Tr (§IAn) = n~1 Tr (An)' 

Therefore, the operator 0;0n exists as a bounded, 
linear, nontrivial operator if and only if the infinite 
product 

converges to a nonzero quantity. 

5. THE KOLMOGOROV EXTENSION THEOREM FOR 
GLEASON MEASURES 

Let {m n} be a family of Gleason measures over the 
family of Hilbert spaces {Hn}. Furthermore, let {M) be 
the corresponding family of operators, Then we have 
the following propOSition. 

Proposition ,:I: The family {0~=1 mn' 0~lHnh has an 
extension to e:=lHn if and only if 0 < n;=II1Mnli. That is, 
there exists a Gleason measure m on 0:=IHn satisfying 

m (E0(~pHn)) ~(2:) mn (E) , 

for every closed subspace E of 0f.~Hn for every p if and 
only if 0 < n;;:. III M nil. 

Thus we see that if Hn =R2 for each nand M n =: tI, 
where I is the identity operator of R2, then M n will 
represent a uniform distribution on Hn and yet there 
will be no extension on 0;'lHn • 

The condition 0< n:=IIIMnll implies that IlMnll-l 
and since Tr(Mn)~l, we see thatMn tends to a projec
tion on a one-dimensional subspace if both are to be 
true. Hence the states {mn}nEN must become asymp
totically pure. 
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APPENDIX 

Note: The proofs of the propositions given here utilize 
the results of Sec. 4. This yields both simplier proofs 
and results of greater generality. 

Proof of Proposition 1 

Let Hn be the given countable family of Hilbert spaces 
with mn a given Gleason measure defined on Hn and Mn 
the positive. trace-class operator representing m n , 

Then for each p we define the operator 0~IMn' Thus we 
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have 

(21 mn) (E) =Tr[(21Mn)PE] 

=Tr[ (~:Mn) (PE0I~1] 

= (i: mn) (E0 Hp"1)' 
where 1/>+1 is the identity operator on H/>+l" 

Proof of Proposition 2 

Let mn be the given family of pure states and suppose 
en is a unit vector in the range of Mn' Then let e=0;=1en 
and let M be the orthogonal projection onto the subspace 
spanned bye. Then, if we define 

E1 =E0( ~ Hn) 
n=~1 

~ 

for every closed subspace E of 0~1Hn we shall have 

Tr(MPE.)=Tr((~1Mn) PE) Tr((0 Mn) 0 In) 
n=1 n=!> n=!> 

=Tr((~1Mn) PE) =(~1mn)(E). 
n=1 n=l 

Thus M extends the M n' That this extension is non
trivial follows from the fact that IIMII = rr:=11IMnll = 1 > O. 

Proof of Proposition 3 

Let ~ = {e~} be the sequence of unit vectors about which 

is to be constructed and let en be the sequence of unit 
vectors lying in the range of the M n' s. We must show 
that the operator M =0;:',,1Mn is not the null operator on 
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This will insure that the extension exists on this con
struction of the tensor product. 

First we observe that 

1 = II M II '" II M II ~ 

=sup {[MX, MX]:XE21~Hn' II x II =1} 

and since the elements of the form X=®;:',,1Yn' Yn=e~ for 
all but finitely many n generate the tensor product under 
consideration we see that IIMII~ = 0 if and only if M x = 0 
for every such generator. 

However, if we set 

x = (~1 Yn) 0 ( 0 e~), 
n=l rr-L 

then 

for every choice of Land Y1' . '0, YL-P Thus, if IIMII~ = 0, 
it follows that 

for every value of L. On the other hand, if IIMII~ > 0, 
then for some choice of Land Y1"'" YL-1> Mx*O and 
hence for that choice of L 

ii I(e~,en)nl >0. 
n=L 

IA. M. Gleason, J. Math. Mech. 6, 885-94 (1957). 
2B. Nowak, Bull. Acad. Polan, Sci. Ser. Sci. Math. 
Astronom. Phys. 22, 393-95 (1974). 

3J. von Neumann, Compositio Math. 6, 1-77 (1938). 

Mark J. Christensen 115 
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An exact dispersion equation fen) = 0 is obtained for (001) surface magnons in an fcc lattice with nearest 
and second nearest neighbor Heisenberg coupling. On the Brillouin zone boundary a closed expression is 
given for the frequency n. while a simple root search yields n for wave vectors inside the zone. These 
exact frequencies confirm the results obtained by Trullinger from a Gottlieb polynomial expansion; a 
discussion of the latter method is given. 

Recently Trullinger! demonstrated a new approxima
tion scheme for solving discrete one-sided linear equa
tions by expanding in orthonormal functions of a discrete 
variable, the Gottlieb functions. As an example he 
solved a surface magnon problem with coupling through 
second nearest neighbors. The purpose of the present 
paper is to exhibit an essentially exact solution of this 
latter problem, by means of which several features of 
the Gottlieb polynomial method are clarified. 

Let 5;,.(x, y, t) be the left-hand circularly polarized 
component of spin on the particle at position (x, y) in the 
mth layer of an fcc lattice [Ill = 0,1,2, ... , measured 
inwards from the (001) surface). With the ansatz 

the equation of motion, previously given in equation 
(3.1) of Trullinger'sl paper, can be written in a con
venient form: 

n5(m) = L2 (S(III - 2) + S(1JI + 2» + Ll (S(m - 1) 

+S(m+l»+Lo5(m), 711?2, 

nS(l) = L2 5(3) + Ll (S(2) + 5(0» + LOl S(l), 

nS(O) = L2 5(2) + L j 5(1) + LooS(O). 

Here 

(1) 

(2) 

(3) 

(4) 

n=wI5Jj , (5a) 

L, = - J21Jt = - r, (5b) 

Ll == - [1 + coskx a + cosl?y a + cos(k" + I?) a], (5c) 

Lo == 12 - 2(coskx a + cosky a) + r[6 - 2cos(kx + l?y) a 

- 2cos(l?x - k,.} a], (5d) 

LO! = Lo - r, (5e) 

Loo = Lo! - 4. (5f) 

J 1 and J2 are exchange integrals, and a is the lattice 
spacing. 

Equation (1) is a finite difference equation for the 
{S(m)}, with constant coefficients Lv L 1, Lo. As such 
it has basic solutions of the form 

where direct substitution in (1) yields an equation for 
the {I;}, 

(6) 

(I + rl)2 + (Lt!L2)(t + t -1) + LolL, - 2 - niL, = o. (7) 

The four solutions are 

I==Hw±+';W.-4], MW±-v'W.-4], 

where 

(8) 

W. = H-(L/L,)± [(Lt!L2)' + (4IL2)(n + 2L, _ Lo»)1/2}. 

(9) 

In general these roots occur in reciprocal pairs, say 
11, 11-

1
, '2' '2-1, where 

(10) 

The general sUrface magnon solution, which vanishes 
as m - 00, must thus be of the form 

5(111) =Att + Bft. (11) 

Equation (11) automatically satisfies (2) but must be 
subjected specifically to the edge conditions (3) and (4). 
This gives two linear equations for A and B, namely 

X l1 A+X12 B=0, 

X 21 A + Xn B == 0, 

where 

X ll = W l - Lztl- L1 (tl + 1) - L o1 t1, 

X 12 == ntz - L2tl- Ll (tl + 1) - L o1 t2, 

X 21 == n - L2tl- Litt - Loo 

Xzz == n - L2tl- L1tz - Loo. 

(12a) 

(12b) 

(13a) 

(13b) 

(13c) 

(13d) 

The condition that (12) have a nontrivial solution is 
the vanishing of a determinant, 

(14) 

Equation (14), with the definitions (13), (10), (9), 
(8), and (5) is an exact secular equation giving the sur
face magnon frequency n. Its terms contain only 
trigonometric and algebraic functions and so it is trivi
ally programmed for a numerical root search. For 
wavevectors (k", nla) on the zone boundary or these on 
the zone diagonal (kx , nla - k), Eq. (5c) shows that 
Ll == 0, so that neighboring layers are not coupled in the 
equation of motion. A trivial exact solution is then ob
tained with the ansatz 

S(2n)==p", 

5(2n + 1) == 0, n = 0, 1, 0 • '. 

(15) 
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Direct substitution in (2) and (4) then gives 

p=r!(r+4), 

n(kx , II/a) = 10 + 5r - 2(1 - 2r) coskxa -,;. /(r + 4), 

(16) 

n(kx, II/a - kx) = 8 + 7r + 2r cos(2kx a) - ,;. /(r + 4). (17) 

For example, if r= 0.2 then (16) gives 

n(II/a, II/a) = 12.190476190477, 

which agrees with Table I of Trullinger, up to 11 signifi
cant figures. This amply verifies the excellent con
vergence of the Gottlieb polynomial method, at least at 
the zone corner. At other points covered by (16) and (17) 
similar agreement was found with the results obtained 
by expanding in 10-15 Gottlieb functions. Indeed, from 
a root search on (14) good agreement was obtained 
everywhere in the zone. 

Several points now emerge concerning the Gottlieb 
function method: 

(i) Excellent results can be obtained for the eigen
frequencies, as tested against an exact solution. 

(ii) The Gottlieb solutions SCm) need not have the 
correct behavior as m -00. In the present case the ex
act solutions are sums of exponentials L;iAi exp(- Aim), 
whereas the Gottlieb approximations of nth degree 
have the simpler asymptotic form m" exp(- Am). Since 
considerable freedom is available in the choice of A, 
the asymptotic behavior is not necessarily well given by 
the Gottlieb expansion. Even the Aopt corresponding to 
optimum Gottlieb convergence appears to be only rough
ly correlated with the exact A/S. In general it is not 
surprising that the eigenfunctions SCm) are less accu-
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rately determined than the eigenfrequencies n; for the 
problem can be formulated as a variational calculation 
in which the frequency is stationary with respect to 
changes in the eigenfunction. It should be noted that, 
for many surface problems where the surface mode de
cays rapidly, the asymptotic form of the excitations is 
largely irrelevant. 

(iii) The method presented in this paper is readily 
generalized to give essentially exact results for linear 
equations of the form 

S(m)= .6 K(lm-m'I)S(m'), (18) 
m' "'0 

where K has a finite range, say n. The method requires 
a root search of an nth degree polynomial and of a 
specific derived function/(n), but is otherwise exact. It 
is therefore probably preferable to the Gottlieb expan
sion method, which is approximate and requires 
diagonalization of matrices whose size increases with 
the desired accuracy. 

However, for a large class of nontranslationally
invariant problems (e. g., the equation 

S(m)=o(m)S(m)+ :6 K(lm-m'I)S(m'), 
m';;=.O 

where oem) is not constant), the Gottlieb function ex
pansion continues to be available while the method of 
the present paper fails. 
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A class of singular Hamiltonians with deficiency indices (1,1) is studied. By using asymptotic behavior of 
functions from their domain. all self-adjoint extensions are described. The Friedrichs extension is shown to 
be (in a certain sense) a limit of nonsingular Hamiltonians. 

I. BASIC PROPERTIES OF SINGULAR HAMILTONIANS 

During the past few years, a special type of the 
singular Hamiltonian-quantal oscillator-has been in
vestigated by several authors from various points of 
view. 1 The aim of the present paper is to explain some 
properties of a more general class of singular 
Hamiltonians. Let us consider the linear differential 
operator 

d2 s2 - 1/4 
Lo=-p+ 2 +v(x), O~s<l, 

x x 
(1) 

as the linear operator in the complex Hilbert space 
L 2(0,00). For simplicity, vex) is supposed to be a real 
function, continuous and bounded from below on [0,00). 
Lo is defined on the domain D(Lo) = CO' of all infinitely 
differentiable functions with the compact support in 
(0,00) (finite functions). Clearly, Lo is a symmetric 
operator. At the point x = ° the case of the limit circle 
occurs and at x = "" that of the limit point occurs. 2 

From the Glazman theorem we conclude, that deficiency 
indices of Lo are (1,1).3 Therefore, one-parameter 
family of self-adjoint extensions (s. e. ) exists. 4 It is 
important to mention another property of Lo 5: 

(u, LoU) "" inf vex) Ilu 11 2
, U E: Co. (2) 

In other words, Lo is bounded from below. NOW, the 
following can be stated. 6 Let L be any s. e. of Lo. The 
spectrum of L in the interval (- "", infl'{x)) consists 
either of the only simple eigenvalue or it is empty. 
Vice versa, any point of this interval is the eigenvalue 
of some s. e. of Lo. To obtain further results, it is use
ful to consider as an example the quantal oscillatorl: 

d2 s2-1/4 2 
iv! 0 = - ~ + 2 + x, ° ~ 8 < 1, (3) 

dx x 

with the domain D(Mo) = Co. Let us also consider the 
adjoint operator lvio. The spectrum of Mo is the entire 
complex plane <C. Indeed, the eigenfunction, corre
sponding to the eigenvalue - 4p + 2 + 28, P E: <C, is 

Bp,.<X)=xS+l!2exp_(!;) ~(p,8+1,x2). (4) 

In (4), ~ (a, c, x) is the confluent hypergeometric function 
of the second kind. 7 It is also possible to write 

Bp,s(x) =x-1/2 W k, m(x2), p= 1/2 - k+ m, s =2111, (5) 

where W k,m is the Whittaker function. It is easy to 
understand why JIo is not self-adjoint. Integrating by 
parts the expression 

Q(u, 11) = (u, MQ v) - (MoU, 11), U, VE: D(MO+)' 

we obtain 

Q(u, v) = lim (ii'v - ii v')(x). 
x .. 0+ 

(6) 

Q(u, v) is generally different from zero on D(Mo) XD(:v!o)' 
The behavior of functions (4) for x - 0+ is 

0< s < 1:/- x 1/2 (x-S + axS) + O(x5/2 -s), 

a= rep - s)/r(p) E <C, 

I-X1/2+S+0(x5/2-s), a=+oo, 

s = 0: 1- X1!2 (lnx - a) + O(x5!2Inx), 

a = - (1/2if1(p) + Y) E: <C, 

l-xl12 +0(x5!2), a=+oo. 

In (7c), if1(p) is the logarithmic derivative of the r 
function and y is the Euler constant. 7 

(7a) 

(7b) 

(7c) 

(7d) 

Due to the continuity of vex), all functions from the 
domain of Lo have the same behavior at x = ° as in 
the case of .'1-10' Further, on the domain of any s. e. of 
Lo the form (6) has to vanish. [There is no term with 
x - co in (6) for vex) considered.] 

This and the general theory4 proves the following 
theorem. 

Theorem 1: For any fixed aE: ffiU {+ oo}, let L U be the 
differential operator in Eq. (1) with the domain D(L U

), 

defined as follow s: u E: D (L U), if 

(1) UE:L 2(0,OO) is continuous in (0,00); 

(2) u' exists, locally absolutely continuous in (0, co); 

(3) LUuE: L 2 (0, 00); 

(4) In some right neighborhood of x = 0, u is a linear 
combination of the function with behavior (7) (for 
chosen a) and a function g=o(x1/2

+
s ). 

L U is a s. e. of Lo and any s. e. of Lo can be obtained 
in this way. L ~ '" L F is the Friedrichs extension (F. e. )8 

of La and has the same lower bound b "" infdx) as Lo. 

Let us consider again M a(3). lV? has a simple, purely 
point spectrum Ao < Al < ,. '. For a - - 00, AO - - 00, 
Ak -4k-2+28, lz=1,2, .. •. Fora-+ oo , Ak -41l+2 
+2s, ll=O, 1,·'·. For a=+oo, we obtain the well
known case1 with the eigenfunctions x 1/2+s exp(- x 2/ 
2)L~(x2); L!(x) are the Laguerre polynomials. 7 

It is worthwhile to note the following fact: Due to the 
vanishing of Eq. (6), the flux of probability is non
singular on D(LU

) in the one-dimensional case. Analogi-
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cally, in the three-dimensional case (cp(r) = u(rb--1) the 
flux of probability - jr y;. is nonsingular. 

II. REGULARIZATION 

In the monograph of Landau and Lifshitz, 8 a simple 
method of regularization for singular Hamiltonians is 
used. On the interval [0, E], E> 0, the constant value 
(s2 -1/4)/E2 is substituted instead of (S2 -1/4)/x2. Add
ing the boundary condition u(O) = 0, we define uniquely 
a self-adjoint operator L E • 9 In the limit E - 0, we get 
the behavior (7b) for eigenfunctions for the case 
s> 0. 8 It is easy, however, to obtain an analogical re
sult for s = O. 

We can associate a closed quadratic form lE(u) 
= (u, LE u) with any L E• 9 From the results given by 
Kato,10 Theorem 2 follows immediately. 

Theore m 2: For any Z E Ir, Imz #0 0, the resolvent 
(L._z)-t converges strongly to the resolvent (LF-ztt 

of the F. e. of Lo (as E - 0). Let dE(},.) be the spectral 
measure of LF (LF= f },.dE(},.», and let },.o be a continuity 
point of dE(},.). The spectral projector E(},.o) = f~o dE(},.) 
is the strong limit of the corresponding spectral 
projectors of L •• 

This theorem suggests, in fact, the possibility of 
numerical treatment of problems with Singular opera
tors. Other approximative methods, using functions 
with correct behavior at x = 0, have been proposed re
cently.11 (In this paper, singular Hamiltonians are used 
to describe physically real systems-quasilinear 
molecules. ) 
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Starting from the formulation of the Hamiltonian dynamics in phase spaces with a symplectic structure, we 
show that it is possible to formulate the mechanics recently proposed by Nambu by means of a mapping 
from the even-dimensional Hamiltonian phase space to a "phase space" which displays all properties of 
Nambu's theory. The difficulties concerning the process of quantization of Nambu's theory can be presently 
discussed at classical level by means of a suitable interpretation of the meaning of the several Hamiltonians 
of the theory. Some examples are given. 

I. INTRODUCTION 

Recently Nambu1 proposed a new formulation of the 
analytical mechanics for phase spaces which may have 
even or odd number of dimensions. The physical motiva
tion for constructing such formulation is based on the 
Liouville theorem. Nambu shows that is possible to 
formulate this theorem in phase spaces of even or odd 
dimensionality by means of a suitable increase in the 
number of the Hamiltonians. For an n-dimensional 
phase space his theory has (n - 1) Hamiltonians, all of 
them being constants of motion. The proof that the 
Liouville theorem follows from this method is a direct 
consequence of the result that the field of velocities 
is divergenceless. One of the properties of the usual 
Hamiltonian theory is also of this nature, namely, the 
fact that the field of velocities v - (q;,p;) is divergence
less allows for a proof of the Liouville theorem. 2 By 
introducing a matrix representation for Hamilton's 
theory it is possible to show that the proof of Liouville's 
theorem follows similarly to the case of Nambu's theo
ry, the only difference, of course, being the dimen
sionality of both phase spaces. This fact together with 
the result that the quantized version of Nambu's theory 
is the usual Heisenberg representation of quantum 
mechanics seems to indicate that there exists a con
nection, at classical level, between these two formula
tions. In this paper we look for such a relationship be
tween the usual canonical dynamics and the new version 
proposed by Nambu. The method which will be used is 
the matrix representation of the Hamiltonian mechanics. 
This formulation is a well known mathematical method 
which has made infrequent appearances in the physics 
literature" 

In Sec. 1 we give a short summary of the matrix 
formulation of the Hamiltonian dynamics, under the 
several forms that it may be exhibited. In Sec. 2 we 
show how it is possible to transform to another repre
sentation which possesses all properties of Nambu's 
theory. At the last section of this paper we present 
some examples of our method. 

1. FORMULATION OF THE HAMILTONIAN 
DYNAMICS IN 2s-DIMENSIONAL SYMPLECTIC 
PHASE SPACES 

We denote by (q;,Pi), i = 1, ... , 2s, the variables of 
a canonical phase space. Let Vzs be the space of the 

variables ya, a = 1, ... ,2s, defined as a column matrix: 

Define the anti symmetric 2s x 2s matrix 1) as3 

1)a b+s = 5ab , 1)a+s b = _ 5ab , (1. 1) 

and 1)00 = 0 otherwise. From now on we shall use the 
first letters of the Latin alphabet to indicate degrees of 
freedom ranging from 1 to 25 if they belong to the y 
variables, or respectively from 1 to ~ and from s + 1 
to 2s if they refer to the q and P variables. Thus, 

ya=qa, a=1, ••• , s, 

ya=Pa_s, ([=s+1, ... ,2s. 

The Hamiltonian equations assume the form 

dya _ ab fJH 
Tt-1) a/' 

The matrix 1)ab satisfies the condition 

(1. 2) 

(1. 3) 

where LA, B] denotes the Poisson bracket (PB) of the 
dynamical functions A and B. The relations (1. 2) and 
(1. 3) show that we can write the Hamiltonian equations 
under the usual notation of Poisson brackets. The 
Poisson bracket is here defined by 

LA B]= ab~ ~ 
, 1) oya al (1. 4) 

and the equations of motion for closed dynamical sys
tems may be written as 

dF_[F H]- ob aF aH 
dt- , -1) (1),02/' 

The field of velocities, 1,0 =.va, is divergenceless, 

01,0 _ abH -0 
oya -1) ,ab-

(1. 5) 

(1. 6) 

Equations (10 5) and (1. 6) for F=P(:v), with p(y) the 
statistical distribution function allow us to prove that 
for closed dynamical systems 

dp a 0 

dt = -aa(PV), y 

and the rhs vanishes as a consequence of the continuity 
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equation for steady flow in V2s ' This proves the 
Liouville theorem in similar steps as those suggested 
by Nambu. However, we still may have a difference 
in dimensionality for both phase spaces. What we intend 
to show here is just an analogy to the mathematical 
steps followed in the proof of this theorem. Of course 
this has nothing to do with any deeper analogy between 
the two formalisms, but suggests that such an analogy 
may exist. 

A transformation of V2s on itself is a canonical trans
formation if the fundamental PB relations are left 
invariant, 

y - y, [y\ y"l =11ab. 

Thus, canonical transformations leave invariant the 
tensor 11ab, 

ijab = 1]ab. (1. 7) 

From (1. 4) we have 

oy-a oy-b 
[y-O ),b]=nrs __ ==11ab. 

, ./ oyr oys (1. 8) 

This relation represents an usual tensor law of trans
formation, but now we have the constraint (1. 7). Taking 
determinants on both sides of (1. 8), we find (use that 
11] 1 *- 0, indeed, 11] 1 == + 1) 

I~~ I ==±1. 

The connected components of a canonical transforma
tion are those with Jacobian equal to (+ 1). A special 
class of canonical transformations are the linear trans
formations in V2., 

yO==L4byb. 

The connected components satisfy IL 1 == 1. From (1. 8) 
we have in this case 

(1. 9) 

For infinitesimal linear canonical transformations we 
have 

ya==ya+~a(y), ~a==eobl. 

From (1. 9) we get 

1jaeeb C + 1] cb ea 
C == 0 (1. 10) 

The quantity playing the role of a metric here is the 
tensor 1]0b. However since this tensor is antisymmetric 
we have to define properly the process of raising and 
lowering of indices. First we note that the inverse of 
the matrix 1] is the matrix 1]-1 == (1]ab) == - (1]4b). Raising 
and lowering of indices will be defined as 

X· == 1]abx" == - Xb 1]bO, 

X. == l1]bo1]abXb. 

In general, for objects with several indices we have 

xa •• od···c = 1JdbXa ••• b • •• c, 

and so on. Using these results in Eq. (1. 10) we find 

eba ==Eab. 

Thus, infinitesimal linear canonical transformations 
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correspond to 2s x 2s symmetric matrices when all in
dices are written as contravariant indices. The condi
tion IL 1 = 1 is then identically verified by matrices of 
the form Lab = 04

• + e"., if Eab = Eta. A possible generator 
for infinitesimal linear canonical transformations is the 
velocity field for quadratic Hamiltonians, 

H =:;:; tbGcyGyc, bT = b, 

since then 

~G =EVo =ET/GCbca y" =E bO. y •• 

We can easily verify that bGC == bCG (use that boc = beG by 
definition). Of course not all infinitesimal canonical 
transformations need be generated in this way. We can 
also present this transformation in the PB notation 

oya == ~o =E[ yO, H]. 

For our present purposes the representation which we 
have discussed up to now (we will call it the y represen
tation from now on) is not much useful. We introduce 
another representation by means of a mapping on the 
elements of the y representation as 

y. -w·, uI'= 7"byb 

in such way that the doublet structure of the Hamiltonian 
phase space is brought out explicitly, 

w2o
-

1 ==qa, a=1,2, ... ,s, 

w2 0 =p., a=1,2, ... ,s. 

This mapping is clearly not canonical for the y repre
sentation since (1. 9) is not verified for L = T. It corre
sponds to a relabeling of variables yO defining a new 
column matrix w. Under this mapping the metric 1]ab 
of the y representation transforms to a new metric ~Ob 
according to 

(1. 11) 

(note that T is a 2sX2s orthogonal matrix). From (1. 3) 
and using the property that the 7"b are numbers, we 
easily see that 

~ab == (T1J TT)'" == [w'''~]. 

From (1. 2) we have 

.0_7" .coHaufl_( T)""oH 
w - b 1) 8iJl ayC - T1J Tawil' 

(1. 12) 

Thus, the equation of motion takes the canonical form 

(1. 13) 

We denote this representation as the UJ representation. 
All mathematical formulas holding for the y represen
tation will also hold here. The PB is presently defined 
as 

[A B]= tab ~ aB 
, '" ou!' ar?" (10 14) 

For any dynamical function F(w) we have 

dF = 3.f... ". = tab 3.f... oH = [F H] 
dt owo w '> ou!' ar? ' (1. 15) 

(as before when we considered closed systems). The 
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inverse of ~ = (~ab) is the matrix ~-1 = (~ab)' with 
~ab = - ~ab. 

We may define a symplectic form on Vz• as 

for two elements x,.!£ in Vz •• But since Vz• is the space 
of the vectors w =_(wa) it follows that we must have 
x =/(w) , since otherwise this inner product will not be 
fully defined. The PB is an example of a inner product 
of this type, 

(
ilA OB) 

[A,B)= ilw'ilw' (1. 16) 

Thus, the Poisson bracket between the dynamical func
tions A(w) and B(w) may be given by the symplectic 
inner product of the normals to the two hypersurfaces 
A (w) = const and B(w) = const in Vzs• The property 
[A,A)=O is then a direct consequence of the symplectic 
structure of V2s' 

The process of raising and lowering of indices is 
similar to that used previously for the y representa
tion, with ~ab and ~ab taking the role of a metric. Canon
ical transformations in the w representation are defined 
as 

which imply ~ =~. From (1. 14) we have for these 
transformations 

Similarly as before the Jacobian of these transforma
tions has value ± 1. 

Linear canonical transformations are presently de
fined as 

and from (1. 17) we have 

From the equation of motion (1. 13) we see that the 
closed dynamical system moves along a sheet of the 
family of hypersurfaces H(w) = const, where H is the 
Hamiltonian 

From the geometrical point of view this means that 
conservation of energy is associated to the symplectic 
structure of Vzs' 

From now on we will restrict the discussion to the 
particular case of s = 3. The equation of motion (1. 13) 
can be rewritten under the form 

(1. 18) 
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for 

E= (0 
-1 

EZ = - 1, a, b = 1,2, 

Thus, the equations of motion (1. 18) may also be pre
sented as 

'i_ aH 
w -E""§WI' (1. 19) 

(These results may, of course, be easily generalized 
for arbitrary values of s. ) We denote this form of re
writing Hamilton's equations as the w representation. 
It brings out explicitly the doublet structure of phase 
space. The transpose of the operator Vi is the row 
matrix operator 

V- --T (il a) 
i - oqi ilPi . 

T 
Operating on the lhs of (1. 19) with the operator Vi' 

we get again the result that the field of velocities is 
divergenceless, 

J.w'i=J.E'M.H=E(a)(b) a aH 0 
v, v, v, aw,(a)aw,(b) = • 

In this expression as well as in all the others which 
follow we are summing over all repeated indices. The 
fundamental PB relations here take the form 

(1. 20) 

They clearly show that elements corresponding to dif
ferent doublets have vanishing Poisson brackets. From 
(1. 20) we have for the PB of the dynamical functions 
A(w) and B(w) 

[ 1 (a)(b) aA ilB 
A, B =E awHa) ilW'(b)' (1. 21) 

Thus, from (1. 19) and (1. 20) we have 

WHa) = [w Ha ), H). 

In this representation E = (E(a)(b» and c 1 = (E( a)(bl) corre
spond to the metric, Raising and lowering indices which 
label the components on each doublet is carried out 
similarly as before, 

X(a) = E(a)(blX(b) = _ X(b)E(b) (a) , 

X(a) = X(blE(b)(al = - E(a)(b) X(b). 

The inner product of the two elements x~a) =/;(a) (w) and 
w~a) in V2s is given by the symplectic form 

(note that the indices labeling the several doublets, that 
is, the indices i,},"', may be written in any position 
since they correspond to an Euclidean structureL In 
this notation the PB takes the form 

laA aB) 
[A, Bl= \aw' aw . 

Canonical transformations in this representation are 
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mappings which preserve the form of the metric, 

Therefore, from (1. 21) we have for canonical 
transformations 

o-Ha) 0-11(0) 
(c)!d) _w ___ w __ _ BikE(a)!b) 

E awi(C) OWi(d)-

2. REPRESENTATION OF THE ANALYTICAL 
MECHANICS IN TERMS OF FUNCTIONS OF 
DOUBLETS 

(1. 22) 

The w representation studied at the end of the last 
section has two basic properties: It has an Euclidean 
structure on the indices i, j, ••• labeling the several 
doublets (for phase spaces of dimension 2s these indices 
go from 1 to s) and has a symplectic structure for the 
degrees of freedom associated to each doublet. In this 
section we consider the case for s = 3, the reason for 
this choice will be made clear in the exposition which 
follows. Presently we want to introduce a pure triplet 
representation of analytical mechanics. In order to ob
tain such a representation we have first of all to define 
a mathematical process for going from the previous 
set of three doublets to a pure state of three variables 
defining the triplet state. For doing this we consider a 
mapping from the space of the quantities wila) to a 
space of variables Zi, zi =zi(wj(a» in such way that in 
the new representation the indices corresponding to in
ternal degrees of freedom for each doublet are no longer 
present. In other words, in the mapping functions we 
are summing over all indices of the type (a), (b), etc. 
This transformation will not preserve the canonical 
symmetry of the w representation. Therefore, we now 
have a formula similar to (1.22) but in the rhs we have 
to write a new metric field. We denote this new metric 
by pik, 

(lzi GZ k 

pik(Z) = [Zi, Zk] = (a)(b) aw}(al awj(b)' (2.1) 

In general this new metric becomes a function of the 
variables Zi, a property which was not present in the 
previous representations. We call this new representa
tion the z representation. 

The equations of motion become 

dz
i 

_ OZi , j( a) _ Dzi (o)(b) DH 
dt - DWj(a) W - DWj(a) ( awJ(bl • 

Considering that H may be written as a function of the 
Zi we have 

dz
i 

ik aH [i ] 
Tt=P (lzk=z,H. 

The PB is here defined as 

[ ] aA [i k] oB ik aA oB 
A,B =-;-r z ,z -0 k =P -:;:-T-;;Ii. 

uZ Z uZ uZ 

(2.2) 

(2.3) 

The indices i,j, •.• are written as contravariant indices, 
formally we may regard the matrix plk as a symplectic 
metric; however, here this interpretation cannot be 
taken in the sense used before (defining an inner pro
duct) since the choice that we will use for the pik will 
imply that this matrix is singular. Thus, we keep all 
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indices which refer to the z variables as contravariant 
indices and do not use any definition for lowering such 
indices. 

We define the operation 

{ }
_ ijk OA ~ OC 

A,B,C -E azr azi a?' (2.4) 

which corresponds to the volume contained by the three 
vectors VA, VB, and vC. The symbol EiJk is the Levi
Civita symbol with E123 = + 1. This operation may be 
formally interpreted as a generalized "Poisson bracket" 
derivable from the "fundamental generalized PB 
relations, " 

(2.5) 

The relations (2.4) and (2.5) are Nambu's definition 
of the PB. 

We now particularize the general mapping (2.1) in 
such a form that the antisymmetric tensor pik takes the 
form 

[this is obtained from (2.4) for A = Zi, B = G, C =Zk], 

for G(z) a given dynamical function. Then, 

'. [. k] . 'k DG p" = z' Z =E'1 -'. , GZ 1 
(2.7) 

For the choice (2.7) the equation of motion (2.2), for 
the zi, takes the form postulated by Nambu, 

dz
i 

_ (i}k ~ aH 

dt - az j DZk ' 

Equivalently we may write 

dz
i 

_ [ i H) _ {i j k} aG CH _ { i G H} 
dt - z, - z ,z , z GZ j GZ k - z, , . 

(2.8) 

(2.9) 

Therefore the pair of dynamical functions G and H which 
Nambu calls Hamiltonians are here represented by G(z) 
associated to the weighting factor pik through Eq. (2.7) 
and by H(z) which plays the role of the Hamiltonian in 
the usual sense (note that H appears through the terms 
wi(a». 

In general we have, for any two given dynamical 
functions A(z) and B(z), 

[A ] ik iJA aB {i k} iJA aB ,B = P -;-r -:;Ii = z , G, z -;-T -;;Ii' 
uZ vz uZ uZ 

Then, 

[A, BJ={A, G, B}. (2.10) 

The Eq. (2.10) relating the two types of PB is consis
tent with the alternation and derivation laws. The first 
law is obviously verified by both types of PB. The 
derivation law is verified for A - A 1A 2, or for B - B 1B 2, 

for fixed G. From (2.10) we have for any dynamical 
function Alz), 

dA aA. i [ ] {A } di=a;-rz=A,H= ,G,H. 

Colber G. Oliveira 
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In particular, for A - G we get 

dG [ 
dt =lG,H]={G, G,H}=O. (2.12) 

Therefore, the function G(z) associated with the 
"metric" of this phase space is a constant of the motion. 
Again from (2. 10) we obtain, for B - G, 

[A, G] = {A, G, G}= O. 

Thus, the function G(z) has vanishing PB with any dy
namical function A(z). This property is a direct con
sequence of the definition of PB, with the plk as a 
weighting factor, 

[A G]- Ik aA aG _ IJk aG aA aG_ o , -p a7 a? -E ai! azr p- . 

The function G(z) is here the analog of a c-number (in 
the z representation) in the quantum theory. This ex
plains the difficulties concerning the problem of quanti
zation of this formulation, and the result that the 
quantized theory is equivalent to the usual Heisenberg 
representation of quantum mechanics. 

As an example, for the free rigid rotator where 
Zl =LI (angular momentum, which presently is written 
in function of the doublets as Zl =1€ljkw;EWk) the func
tion G(z) is proportional to the square of the angular 
momentum, and therefore has vanishing PB with any 
function of the angular momentum. 

3. EXAMPLES 

Besides the example of the rigid rotator given by 
Nambu, some other examples of his theory are known 
in the literature. 4 Presently we consider briefly three 
examples which are of interest. These three examples 
will have similar symmetry properties under rotations 
[taking Cartesian coordinates (qj=Xj), we consider the 
class of Hamiltonians which have null PB with the 
generator of infinitesimal rotations, (1. = - 4 Ci.rsErs~k' 
where Ci. rs is an antisymmetric matrix (first order 
infinitesimals) related to an orthogonal rotation matrix 
by R rs = Drs + Ci.rJ. This property will allow us to use 
the same set of constants of motion for these three ex
amples: The total energy and the square of the angular 
momentum. Since the Lie algebra of the phase space 
variables Zi is related to the form of the constant of 
motion G(z) through its definition [Eq. (2.7)], it follows 
that we can use the same set of variables Zi for these 
three examples (since we require the existence of the 
same constant of motion for all three cases). A con
venient set of functions zi(wr(aJ) for these examples is 

for 

p' ~ I (~ 
Thus, 

zl=tp,p" 2 I 
Z =2XiXj, (3.1) 

(presently we use Cartesian coordinates, q, =Xi)' The 
Lie algebra of the PB of the variables z' has the form 

(3.2) 
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(which satisfies Jacobi's identity). From (2.7) and (3.2) 
we have 

aG 3 
W=z, 

aG 
---.- = - 2z1 az' , 

which has as solution 

aG azr = - 2z2 

G(z) = 4{z3)2 - 2z1Z2, (3.3) 

From (3,1) and( 3.3) it follows directly that G(z) is 
proportional to the square of the angular momentum 

(3.4) 

i. e., it has the dimension of the square of an angular 
momentum. We have 

[A (z), G(z)] = o. (3.5) 

This condition holds for every functionA(z) (as was 
seen before), and implies that 

[Zi, G(z)] = o. (3.6) 

These conditions can be easily understood in the present 
case by the following. From (3.1), (3.4), and (3.6) we 
see that the square of the angular momentum has null 
PB with: 

(a) zl = kinetic energy times mass (zl/m has the 
dimension of a Hamiltonian for a free particle). 

(b) z2 = function of r, that is zZ =~r, which corre
sponds to the potential energy of a particle in a central 
field of forces for a harmonic oscillator, where 
z2 = (mw2)"1 V. 

(c) Z2 = scalar product of the vectors x and p. 

These three results are a direct consequence of the 
invariance of the quantities zl, z2, and z3 under rota
tions in the space of the variables x and p. The corre
sponding conditions for the case of a rigid rotator are 
simply the conditions [L i , LZj = 0, which say that LZ is 
invariant under rotations. 

The examples that will be considered are: 

(1) Free particle: For this case the Hamiltonian be
comes equal to the kinetic energy which we denote by 
the symbol Ho: 

H =Ho = (1/2m) Pi Pi = zl/m. (3.7) 

Then, the two constants of motion G(z) = - ~ L2 and H 0 

generate the motion according to Nambu's equation 
(2.8), and to (3.3) and (3.7) as 

(2) Isotropic harmonic oscillator: Here the 
Hamiltonian has the form 

H=Ho+~kx2, 1?=mw2, (3.8) 

and is written in the function of the variables zi as 

(3.9) 

The equations of motion in Nambu's representation 
follow from (2.8), (3.3), and (3.9) as 

.i1 =_ kz3, Z2 = (1/'11) Z3, .i3 = (2/m)zl- 2kz2 , 

which may easily be seen to correspond to the usual 
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equations of motion for the isotropic harmonic 
oscillator. 

(3) Motion of a pointlike mass in a central field of 
forces: In this case we have the Hamiltonian 

H=Ho+ VCr), 

where VCr) is the potential energy of the particle of 
mass m in this central field of forces. This Hamiltonian 
is written in term of the variables Zl as 

(3.10) 

The equations of motion in the Nambu representation 
then follow from (2.8), (3.3), and (3. 10) as 

,il=_(z3/r )'V'(r), P=z3/m , 

,is = (- 2z2/r) • V'(r) + (2z1/m), 

where V'(r)=dV/dr. 
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We develop convergent series solutions in powers of the wavenumber (k = 2Tr/A) for the field (1/1) and the 
normalized (dimensionless) scattering amplitude (g) for scattering by lossless penetrable obstacles whose 
physical properties are specified by two real parameters. The first two terms of 1/1 are solutions of Laplace's 
equation and the term of order k", n ~ 2, satisfies a two-parameter Poisson equation whose inhomogeneous 
term is proportional to the k" -2 term. The leading term of g is of order k J (as obtained originally, by 
Rayleigh); the k 4 term is zero for shapes that have inversion symmetry, and vanishes in the forward 
direction for all shapes; the k" terms, n~ 3, are expressed as volume integrals of functions involving the 
terms of IjI up to order k" -2. Equivalent expressions in terms of surface integrals are included. For a plane 
wave of arbitrary direction of incidence and a triaxial ellipsoid, we obtain explicitly the first four 
nonvanishing terms of t\I (to order k J) and the first two nonvanishing terms of lmg (to order k 5) and Reg 
(to order k 8). Corresponding results for spheroids, needle, disc, sphere, and for the one-parameter problems 
are obtained as special cases. The necessary transformation of the ellipsoidal harmonics are also provided. 

INTRODUCTION 

We consider the three-dimensional problem of 
Helmholtz's equation corresponding to the scattering of 
a wave with suppressed time factor (exp(- iwt)} by a 
lossless, penetrable, smooth obstacle with all dimen
sions small compared to wavelength (A). The physical 
properties of the scatterer are implicit in the transi
tion conditions at its surface and in the interior value 
of the wavelength: the field (if!) is continuous and its 
normal derivative is discontinuous at the surface, and 
the interior wavelength (Aln) differs from A. Thus the 
problem is specified by two physical parameters, the 
magnitude of the discontinuity of anif! and the ratio of 
external to internal wavelengths ('17 ==' A/Ain)' 

In linearized (small amplitude) acoustics, this two
parameter problem corresponds to the scattering of a 
pressure wave (iI» by an obstacle whose density (pol 
and compressibility (CJ are different from those 
(p., C.) of the surrounding infinite medium; the asso
ciated velocity field is proportional to 'VzjJ. The two 
parameters of the problem correspond to the ratio of 
outer to inner densities (8 ==' pi pJ and the ratio of outer 
to inner compressibilities (C = C+/CJ or equivalently to 
8 and the index of refraction '17 = (C /8)1/2. For 8 - 0 
and C - 0 the results reduce to those for a rigid scat
terer (Neumann boundary condition), 

Rayleigh1• 2 was the first to consider the problem of 
approximating solutions of the wave equation for 12 
==' 27T/A '" 0 in terms of solutions of Laplace's equation. 
Using potential theory results, he obtained approxi
mations for the far field (essentially, the scattering 
amplitude g) of the sphere! and of the triaxial el
lipsoid2 for the one-parameter problems of either equal 
densities or equal compressibilities, and constructed 
the corresponding approximation for the two-param
eter problem by superposition. (We show that this 
superposition procedure is valid only for leading term 
approximation. ) 

Stevenson3 developed a systematic procedure for ob
taining low-frequency approximations for the corre
sponding electromagnetic problem. He applied the de
velopment to the ellipsoid4 and obtained the first three 
terms of the expansion for the near field, and the first 
two terms for the far field in terms of elliptic inte
grals. Stevenson~ also considers the special cases of 
the spheroid and sphere, and cites additional papers3• j 

which use alternative approaches. 

The systematic development for the scalar problem 
of the soft scatterer (Dirichlet condition) of arbitrary 
shape is given by Morse and Feshbach. 5 For the special 
case of the sphere, they give the first three terms of 
the field and of the scattering amplitude explicitly. ThE 
exact solution for the sphere was derived originally by 
Rayleigh! as a Legendre-Hankel series; he obtained 
appropriate low-frequency approximations for various 
cases of physical interest. 1.2 The most complete low
frequency results available for spheroids are those of 
Burke, 6-8 who used appropriate approximations of the 
exact solutions in terms of spheroidal wave functions. 
For the soft,6 hard, ; and penetrable8 cases he obtained 
J' to order ,,2 and g to order 126• Existing explicit ap
proximations for the soft and rigid sphere, the soft and 
rigid prolate spheroid, as well as for the soft and 
rigid oblate spheroid, are presented in Ref. 9, which 
contains many additional citations to the original litera
ture. A survey of Rayleigh's work which also discusses 
his contribution to two-dimensional problems has been 
given by Twersky. 10 Other aspects of low-frequency 
scattering are surveyed by Kleinman, 11 and other 
approaches are considered in Refs. 12-15. 

For the triaxial ellipsoid, Rayleigh's approximation 
of order l?3 for the scattering amplitude g corresponds 
to the leading term of 1mg. The leading term of Reg, 
or order kG, was obtained by Twerskyl2 by direct ap
plication of the general scattering theorem (generalized 
cross-section theorem) to Rayleigh's approximation. 
By extending Twersky's procedure, we obtain Reg to 
order 1(8 by using our new results to order "" for 1mg. 
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STATEMENT OF THE PROBLEM 

We seek a solution l/J of Helmholtz's equation corre
sponding to scattering of a plane wave cp by a penetrable 
obstacle with volume v and smooth surface s. (We 
take the origin of coordinates at the center of the small
est circumscribing sphere Sa, of radius a). In the ex
terior V the solution l/J = l/J+ satisfies 

(V2 +k2)l/J+==0, k=kk, k=2rr!A, 

l/J+ = cP + u, cp == exp(ik. r), 

where the scattered wave u satisfies the radiation 
condition 

limfs la,.u(r)-iku(r)1 2 dS(r)=0. 
r"'oo r 

(1) 

(2) 

In the interior, the solution l/! = l/J- is a nonsingular solu
tion of 

(3) 

where 17 is the relative index of refraction. On the 
boundary the field is continuous and the normal deriva
tive is discontinuous, i. e. , 

where an = n . V and n is the outer unit normal on s. 

The two parameters we use are 8 and C == 8172
, or 

equivalently B =8 -1 and C ==C -1. If B == C == 0, then 
the regions V and v are filled with the same material. 
In this case the incident wave meets no discontinuities 
in the medium of propagation and no scattering occurs 
(i. e., ljJ==cp and u=O). 

In V the solution of (1)-(4) may be represented in 
terms of an integral over v as 

l/J+(r) == exp(ik· r) + ~ j[BVh(k I r - r' I)· vljJ-(r') 
4rrl v 

(4) 

- Ck2h(k I r - r' 1 W(r')] dv (r'), (5) 

where h(x) ==hrit>(x) = exp(ix)/ix is the normalized free
space Green's function for Helmholtz's equation in 
three dimensions. Using Gauss' theorems, we can 
transform (5) to a surface integral over s 

1jJ+(r) == exp(ik· r) + 4~i! [(B + 1)h(k I r - r' 1 )anljJ-(r') 

-l/!-(r')a"h(k Ir- r'I)]ds(r'). (6) 

If we substitute the asymptotic form for kr - 00 in (5) 
or (6), we obtain for r ~ a 

u(r) - g(r, k)h(kr) , 

where the normalized scattering amplitude g is given 
by 

~ ~ ik2 f ~ g(r, k) == 4 [iBr· vljJ-(r') + kq-(r')] 
rr v 

(7) 

xexp(- ikr· r')dv(r') (8) 

or by 

~ ~ k f g(r, k) == 4rri [(B + 1)VIjJ-(r') + ikljJ-(r')r]. n 
s 

xexp(-ikr' r')ds(r'). (9) 
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The proof of the well-posedness of this boundary val
ue problem, based on proving existence and uniqueness 
for the solution of the corresponding integral equation 
formulation of the problem, is discussed in Refs. 
16-18. 

We restrict consideration to small ka, where a is 
the radius of the smallest sphere that circumscribes 
the scatterer, and obtain series solutions in powers of 
k. The incident plane wave cp = exp(ik· r) is analytic at 
k == 0, and we assume that the fields 1jJ- and u are also 
analytic at k == O. Therefore, convergent Taylor series 
for l/J+ and if- exist in powers of k. The procedure we 
follow reduces the boundary value problem for Helm
holtz's equation to a sequence of boundary value prob
lems for Laplace's and Poisson's equations. Both the 
differential and integral equation formulation are used 
throughout. The integral equation which describes the 
problem provides the nonvanishing terms of the far 
field as well as the particular solutions of the Poisson's 
equations. 

DERIVATION OF THE APPROXIMATIONS 
A. The field 

Since both 1jJ+ and 1jJ- are assumed analytic at k == 0, 
the series 

Iif(r) == t (ik(" cp~(r) (10) 
""0 n. 

converge in their regions of analyticity and can be dif
ferentiated and integrated term by term. 

The leading term in each of these expansions is inde
pendent of k and is identical to the solution of the cor
responding potential theory problem (k == 0): 

A solution to this problem is given by cp~ == 1 everywhere 
for any admissible surface s. Since the problem is well 
posedl 6,17 and 1jJ+, 1jJ- are taken to be analytic at k = 0, it 
follows that this solution is unique. Substituting (10) 
into (1), (3), and (4), equating coefficients of equal 
powers of k, we obtain 

V2cp~=n(n-1)17~ct>~_2' 17+=1, 17_=17, 

cp~ == cp~, anct>~ == (B + 1 )anCP~. 

Similarly, substituting (10), and the entire functions 

00 (il?)n ~ 
cp(r) = exp(ik· r) = 6-,- (k. rl". 

n=0 n. 

and 

(12) 

(13) 

kh(k 1 r- r'l) == exp.(il? Ir- r' I) = t (~k)n Jr- r' In_I 
1 I r - r' I n=0 In! 

(14) 

into (5), we obtain 
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cf>~(r) = (k. r)" + 4
B r3 (n) (p - 1) 
rr ",,0 p 

x /1 r - r'l p-3(r - r')· 'Vcf>~_p(r') dv(r') 
v 

n(n - I)C f!(n -2) 
4rr p=o p 

x !lr-r'IP-lcf>~_2_p(r/)dU(r')' (15) 

The expression (15) for cf>~ satisfies the first equation 
in (12). The term (k. r)" of (15) is the contribution of 
the incident wave to the nth coefficient. The remaining 
terms are proportional to either B or C; those in B in
volve the velocity field (i. e., 'Vcf>-) and those in C the 
pressure field. The leading term cf>o is unity, and cf>! 
depends only on B. Equation (15) expresses cf>~ at any 
point in V in terms of cf>i, 0,,; i ,,; n (the interior coeffi
cients of order less than or equal to the order of cf>~). 

In order to determine the nonvanishing terms of cf>~ 

at infinity, we use the asymptotic form 

r- r' [1 (I)J A I r _ r'l = (r - r') y + 0 r2 - r (16) 

then (15) in the far field becomes 

B n-l( ) f cf>~(r)-(k.r)"+46 n (p-l)r. 'Vcf>~_p(r) 
rr p=2 p v 

x Ir- r'lp-2 du(r')- n(n -1)C ~ (n- 2) 
4rr p=1 p 

X [cf>~_2_p(r') I r - r'l p-l dv(r'). (17) 

The contribution of the incident wave to the far field is 
of order r" which is three orders of magnitude higher 
than the contribution of the terms that depend on the 
parameters Band C. This is in accord with the fact 
that the incident wave becomes progressively more 
prominent while the scattered field dies out as we re
cede from the scatterer. The far field form of cf>~ is 
expressed in terms of cf>j, 0,,; i,,; n - 2, which are speci
fied functions. 

For each n = 1 ,2, . " Eqs. (12) and (17) define a 
potential problem whose solution provides the coeffi
cients cf>~ and cf>~ of the expansions (10), i. e., the wave 
theory problem has been reduced to a sequence of 
potential problems which can be solved iteratively. For 
n=I,2,'" we have 

A B [ r- r' A 

cf>!=k·r- 41T Jv Ir-r'13 . 'Vcf>i(r')dv(r')-k· r, (18) 

A 2 B [ r- r' 
cf>2=(k'r) - 41T Jv Ir-r'13 ''Vcf>i(r')dv(r') 

- -E. f dv(r') - (k' r)2 (19) 
2rr v I r - r I I ' 

A B 1 r- r' cf>; = (k' r)3 - -4 I '13' 'Vcf>:i(r') dl'(r') 
rr r-r, 

v 

3B f r - r' -( ') d ( ') + - --- . 'Vcf>1 r v r 
4rr v I r - r' I 

_ 3C [ cf>j(r') du(r') _ 3Cv 
2rr J v I r - r I I 2rr 

A 3B A [ 3ClI 
- (k· r)3 + 4rr r· ) v 'Vcf>i(r') dv(r') - ~ • (20) 
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From (12) and (17) we see that the equations defining the 
first coefficient cf>t depends only on B while all higher 
coefficients depend on both Band C. In the far field, 
cf>t and cf>i are independent of parameters and the higher 
coefficients depend on both Band C. 

From (17) we obtain cf>~ = o (r") as r - "" and, there
fore, the convergence of (10) becomes poorer as r in
creases and fails to converge as r - "". We may over
come this difficulty by using (15) to express cf>" on Sa .. 
(a sphere centered at the origin with radius a +E), 
where E > 0 and a is the radius of the smallest sphere 
that circumscribes s; then, since I r I = a + € < "" for 
r E Sa .. the series (10) converges on Sa .. and provides 
</! on Sa+e' Thus by (4), Eq. (6) transform to 

</!+=exp(ik,r)+ 4k. 
'TTl 

x 1 [h(k I r - r' I Jar' </!+(r') - I)/(r')ar,h(k I r - r'l)] 
Sa+E 

xdS(r'). (21) 

Equation (21) specifies </!+(r) for Irl? a+€ in terms of 
</!+ and aT</!+ on Sa ... 

Equation (12) is Laplace's equation for n = 1 and 
Poisson's equation for n ?-2. From (15) we see solutions 
of Poisson's equation are obtained by quadratures: All 
cf>i, 0,,; i !S n - 1 are known (from the evaluation of the 
successive coefficients), and the unknown term 

B f r- r' -( ')d ( ') - 4rr v I r _ r' I . 'Vcf>" r v r 

can be omitted because it is a harmonic function. The 
term 

_ !!:(n - 1) C f cf>~-2(r') dv(r') 
4rr v I r - r'l 

is also harmonic and can be eliminated. Thus the re
quired particular solution of (12) is provided by the 
nonharmonic terms of (15). 

B. The scattering amplitude 

Substitution of (10) and of 

A .;;. (_ik)n A ,n 
exp(- ikr. r') = u --,- (r· r ) (22) 

n=O n. 

into (8) or (9) yields 

A A J?2 ~ • n n-l (- l)P (~ A 

g(r, k)= 4rr E (lk) E p! (11-1- p)! - 11- P r 

. .£ 'V<p~_p(r')(r. r')Pdl'(r') 

+ C f cf>~_I_p(r')(r' r')P ell' (r l ») (23) 

or, equivalently, 

0-( k) =.!!.- /, (ik)n /, ---- (r' r')Pn A 1 2 ~ n (- I)P ( B + 1 1 A A 

"r, 4rr;,~ ;,~p!(Il-p)! n-p+l s 

. 'Vcf>~+l_p(r/) cis (r') + [cf>~_p(r/) (r. r/) P (n' r) ds (rll). 

(24) 
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where we used 

vct>O==O, r· J~nds(r)=O, i.o.vtPj(r')ds(r'). (25) 

Applying Gauss's theorem to (12), we obtain 

iv v2tP~(r') dv(r') == iJl . vtP~(r') ds (r') 

==n(n -l)l(c +1)/ (B + 1)]f.. tP~.2(r')dv(r'), 

(26) 
i. e., the flux through s of the nth coefficient of the 
interior velocity field is proportional to the volume in
tegral over v of the (n - 2)th coefficient of the interior 
pressure field. The last equation in (25) is (26) for 
n=1. 

The coefficient tP~ is a harmonic function for n = 1 
and a solution of Poisson's equation for n? 2 and, con
sequently, represents a potential function of known den
sity distribution over v, The gradient of this potential 
vtP~ is proportional to the velocity field. Furthermore, 

(r. r,)p==(t OIX;)P 
1=1 

(27) 

Hence, the integrals 

iv tP~.I.p(r')(r· r')P dv(r') (28) 

are moments of the interior pressure fields, and 

r· iv vtP~.p(r')(r . r')P dp(r') (29) 

are moments of the interior velocity fields projected on 
the direction of observation r. The integrals in (24) 
are moments of the flux through s of the same physical 
quantities that appear in (28) and (29). 

The first term of g is of order k 3; all odd-order terms 
are imaginary and all even-order terms are real. The 
evaluation of g to order k n requires knowledge of tPj, 
o ~ i ~ n - 2 if we use the volume integral representation 
(23), and 0 ~ i ~ n - 1 if we use the surface integral 
representation (24); it is therefore more advantageous 
to work with the form (23). 

The first approximation 

g(r,k)=i:: [cv-Br·ivtPj(r')dV(r')]+O(k4) (30) 

consists of essentially two terms, one of which depends 
only on B and the other only on C; here v stands for the 
volume. This result was obtained originally by Ray
leigh, 1,2 who assumed from the start that the small k 
approximation consisted of two terms, one proportional 
to B and one proportional to C. Rayleigh obtained the 
two particular approximations corresponding to B = 0 
and C = 0 in terms of the potential theory solutions and 
superposed the results to obtain essentially (30). We 
show that for n? 2 the tP~ terms depend on both Band C 
and g does not separate into two such sets of terms. 

Equation (23) gives g as a sum of two sets of terms: 
the one that involves the moments of the velocity pro
jected on r has B as a factor, and the other that in
volves the moments of the pressure fields has C as a 
factor. The form suggests that if either the compres
sibility or density of the scatterer is equal to that of 
the surrounding medium, then the expression for g 
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would be devoid of the pressure or velocity fields, 
respectively. If the densities are equal then B = 0 and, 
therefore, both the field and its normal derivative on s 
are continuous: T/2 == C + 1. If the compressibilities are 
equal, then C == 0 and T/2 = 1/ (B + 1) as holds for most 
gases. If the inner density and the inner compressi
bility tend to infinity, Band C tend to zero. The limit 
B - - 1 and C - - 1 corresponds to the boundary condi
tion 0nlp+==O on s (Neumann condition), and to 1jI-(r)=0 
as is appropriate for the rigid scatterer. 

The normalized scattering amplitude g satisfies the 
reciprocity theorem19 

g(lo, k) =g(- k, - r>. (31) 

In addition, g satisfies the scattering theorem19 

-g(r, k) -g*(k, r) =2~ jg(P, k)g*(p, lo)dO(p), (32) 

where * denotes the complex conjugate and the integra
tion is over the surface of the unit sphere. If the scat
terer has inversion symmetry (r EO s implies - rEO s), 
then 

and the scattering theorem reduces to 

(33) 

In terms of real functions An(1\ k), we assume 

g(r, k) = ile 3A 3 + k4A4 + ik 5 A5 + k6AS + ik lA, + kaAa + 0 (k 9). 

(34) 

Then (33) gives 

A 4(r, k) =0, (35) 

As(r, k) =- ;rr/A3(P, r)A3(p, k)dn(iJ), (36) 

Aa(r, k) =- 4~f[A3(P' r)A 5(p, k) +A 5(p, r)A 3(P, k)]dO(p). 

(37) 

Therefore, for scatterers with inversion symmetry the 
first approximation to Reg is of order 1?6. 

Equation (36) gives the leading real part of g in terms 
of the leading imaginary part of g, and (37) gives the 
second term of Reg when the first two terms of Img are 
known. This method of evaluating the successive terms 
of the Reg from Img was originally described by 
Twersky,12 who applied the theorem to Rayleigh's re
sult A3 for ellipsoids to obtain the corresponding As. 
This method reduces the calculations Significantly: In 
order to evaluate the 1?6 term from (23), we require 
tPj, 1 ~ i ~ 4, and for the kB term tPj, 1 ~ i ~ 6; however, 
by using (36) and (37) only tPj is needed for the 116 term 
and only tPj, 1 ~ i ~ 3, for the 118 term. 

More generally for unsymmetrical scatterers, from 
(32) in terms of (34) we obtain 

A 3(r, k) =A 3(k, r), A 4(r, k) =-A 4(k, lo), 

A 5(r, k) =A 5(k, r>. (38) 

Consequently, if r =k, then 
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A 4(k,k)=0. (39) 
s ~~ B ~~ B 

(] S == - 47Tk As(k , k) - 47Tk AB(k, k) + 0 (k ), (41) 

The scattering theorem applied for it = r becomes where 

(42) ( ) 1 f 1 ~ ~ 12 ~ k
2 

- Reg k, k = 41r g(p, k) dQ(p) = 47T as, (40) 

where (] s is the scattering cross section. 

Using (34) and (39) in the first form of (40), we obtain 

follows from (36) for r = it. The first approximation 
for the total energy scattered is proportional to the in
verse fourth power of the wavelength1 (Rayleigh 
scattering). 

APPLICATIONS 
A. Triaxial ellipsoid 

We apply the iterative procedure (12), (17) to a triaxial ellipsoid given by 

a x2 
~ ~ = 1, at > a2 > aa > 0 
1-1 a/ 

In ellipsoidal coordinates p, /J., " we have 

2 (- 1)/-1hi (2 2 + 2)( 2 2 2)( 2 2 2) 
x/ = hih;h§ P - a1 a/ /J. - a1 + a/ " - a1 + a/ , (i==1,2,3), 

with - ha.:S ".:S ha.:S /J. .:S h2 < P < + 00, where 2hl> 2h2, 2ha are the interfocal distances of the main ellipses, i. e. , 

(43) 

(44) 

(45) 

The value P ==a1 specifies the surface s of the scatterer, h2 .:S p < a1 the region v, and a1 < p < + 00 the region V. The 
outward normal derivative corresponds to np , and in the far field we have r - p. The directions of incidence and 
observation are given by ft = Z:~=lin xn and r = 1~=1 on xn respectively, where xn (n::= 1,2,3) are the Cartesian unit vectors. 

Expressions for (it, r)n (n == 1,2,3) in terms of surface ellipsoidal harmonics, 10-29 as well as transformations be
tween ellipsoidal and Cartesian coordinates are given in the Appendix. 

Omitting long computations, 29 we give the solutions of the potential problems that determine the coefficients to 
the order k3, as well as the two leading nonvanishing terms of Img and Reg in terms of elliptic integrals. 

As shown for the general case (and as can be verified for the special case of the ellipsoid at hand) cP~ = 1. 

The coefficients of k are determined by (12) for n == 1 and (18). Solving this problem, we obtain 

CPt == ~ (1- BV IJjt ) i"x., 

a . 
"'_ ~ z"xn 
'l't == L.J nr ' 

""1 n 

where 

(46) 

(47) 

I 1(P)-f'" du I/1==I/1(a1), S(u)=(u2_h22)1/2(u2_h2a)1/2, H1/=1+BVI/1, (i=1,2,3).(48) 
I - p (u2 - al + ai)S(u) , 

The coefficients (M are determined by (12) for n = 2 and (19). Particular solutions of Poisson's equation are 
provided by 

The symbol (A ..-A') represents a repetition of the last term with A and A' interchanged, where 

The functions that appear in (50) and (51) are 

130 J. Math. Phys., Vol. 18, No.1, January 1977 George Dassios 

(49) 
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BV(J.,. 2 2) rn=jjr Dak-an , 
n k=t 

(53) 

IJ.~= C(A - a~) + Ba~, (54) 

The solution is expressed in terms of the elliptic integrals 

o /"" du 0 0 2() j" du 12 IZ( ) 1 (p)= p S(U)' 1 =1 (at), IA p = p (u 2 -ai+A)2S(u)' A= A at, 

I~(p)= I"" (u2-ai+ai)(~~-ai+a~)s(u)' (o,j3,y)=(1,2,3), (2,3,1), (3,1,2), (55) 

H~ = 1 + 2BVAI1, ~cr = 1 + BV(a~ + a;)p". 

The coefficients cP~ are determined by the potential problem (12) for n = 3 and (20). The particular solutions of 
Poisson's equations are 

cpf+ = (k. r)3 + 3B
2

V [IO(P) - t 1;(P)x~]t !a, (56) 
... t ... 1 II! 

p __ C+l 3 i,.x~ 
CPa - B + 1 ~ H~ . 

The solution is 

x [T3(6.! + t i~.l~n)- Tt 1"'1 + t i! .l~n )]r t A ~ 2 + 1] + (Ak - A~ ) 
n=1 \" n=1 L,=I k aa 

+6V3~ £wiel.[t -:4h- (B+1~t~] 
hlhz h3 H IZ3 n=1 anhn hlhzh 3 n=1 an' 

The symbol (Ai - A;) represents a repetition of the last term with Ai and A~ interchanged, where 

AA~}= !5{± r4 t a~- 3at- Vz(t \ + 6z)~1/Z + 2 t a~- ai}, (i= 1,2,3). 
i L n=1 ".1 an a, 'j ".1 

The .l's (functions of a" B, and C, i. e., of the geometry of the scatterer and its physical parameters) are 

.11 = .Ei (HI C + 1 _ 1) _ 2BV]O 
k 5Hl k + B + 1 5Hk' 
3 3BV 1 J.,. Z 1 C + liz 

.lk=-2-Jif D ?:kn an1n+B+l jjf?:kkak' 
kn=1 k 

4 3BV 1 ~ ~I( Z 2 a~] 3(C+1) 2 .lk=-2- JifL.J In 2ak +an)-V ?:kn+ur-?:kkak, 
k~1 k 

where 

and 
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(58) 

(59) 

(60) 

(61) 

(62) 
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!; (1)n hJz~ A~-a~ {l' k=n, 
kn=- ~A'-A" Okn=o k* 1 2 3 k ,n , 

(63) 

(64) 

The corresponding primed quantities are obtained from the above relations by replacing Ai by A~. In evaluating the 
coefficients </>i we used 

3 3 11 11 11 11 I 1 I 1 
V61 1 =1 6a211=10 12=~ 12= 3- 1 12= 2- 1 

1=1 I '1=1 I I ,1 a2 - a3' 2 a~ _ a~' 3 ai - a~ • (65) 

Having obtained the fields to order k 3
, we can determine the scattering amplitude g to order k 5 by substitution in 

(23). Because of the ellipsoid's inversion symmetry the coefficient of order k4 of g is zero. Since the </>j(r/) are 
polynomials of degree i in x~ (n = 1,2,3) for i = 1, 2,3 we see that the V</>j(r/) are polynomials of degree i -1. Simi
larly for (r· r,)n (n = 1,2). Therefore, all integrands are polynomials in xn (n = 1,2,3) of degree 0, 1, and 2. As 
a consequence of the symmetry of the ellipsoid, the only nonzero integrals are those whose integrands are either a 
constant, or x~ (n = 1,2,3). Thus, the only integrals that have to be evaluated in order to obtain g to the order k 5 

are the three principal moments of inertia of the ellipsoid. These are given by 

i 2 47TV 2 
v Xn dv = 15 an (n = 1, 2, 3). (66) 

The term k 3 of g is proportional to the zeroth moment of the ellipsoid, i. e., the volume 47TV/3. The term k4 is 
proportional to the first order moments which vanish by symmetry. (The first order moments give the coordinates 
of the centroid which in our case coincides with the origin. ) The term k 5 is proportional to the second order 
moments (moments of inertia). The form of the higher ellipsoidal harmonics implies that the term k n is expressed 
in terms of the even moments of the ellipsoid up to the (n - 3 )th order (integrals which depend solely on the 
geometry of the ellipsoid). 

Substituting (47), (51), and (59) into (23) and exploiting the symmetry and the form (66), we obtain the following 
multipole expansion in terms of the directions rand k: 

A A ik 3v [ (ytO(r)ytO(k) Yl1(r)yI1(k) Yli (r)Yl1(k») ] 
Img(r, k)", -3- C - B HI + I4. + Hl 

+ ik350V 6 );. (a::,;'~m(r)y~m'(k) + {3::';'Y~(r)Y~' (k» 
n,m ~ 

(67) 

where 
3 n 

6 = 6 6, y~m(r)=p::,(cos8)cos(m</», Y~(r)=P::,(cos8)sin(m</» 
n,m n=0 moO 

and similarly for r"m(k) and y~m(k). The nonvanishing coefficients of the multipole expansion are 

3 3 3 
a~~=(d~=- is L (_l)nw~+ r's L L (-l)k(301n-l)W~n' 

n;:;2 n= 1 k=2 

a~l~ Icr~l =a~~lcr=l = 2a~~lcr=2 = 2a~t Icr=2=2{3t~lcr=3 =2{3~t Icr=3= fa (W~2 - W~3)' 
3 

a7~=ry~~= ~ L (30 1n -l)wrn, 
n=1 

3 

a:;=rv;: = fa L (40 1n - 30 2n - 03n)W~n' 
n=l 

3 3 3 

a~~ = t 2:: (30[n + 1 )w~ + t L L (30[n - 1 )(30 1k - 1 )Wkn' 
n=1 n=1 k=l 
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O'~~ =: fG t2lw~ + (- l)n(w~n - w~n)J, 4i3~~lo=1 =:i3~~ 10=2=:O'g 10=3 =: ~(tl W~ -W~ +w~»), 
where 

l_Ba~(C+l 2 C ) B(VI~-l)[( 1 C+l ~ 2 70] BVI~[ ( ) 2 (1 ) 2 (21 .o)] 
wn- H~ B+l + b + (H~)2 ~n+ B+l -lJan-2BVl - (H~)2 3 C+l an+B Vln+l an+2hVain- 1 , 

4 2BM a! _ ( ') 
W kn =: -H2 J'--~ i3nILn + 1\ - 1\ , 

A ,- ak 

5 2 (C + 1 1 )(f 2 2) 6 C (2 C + 1 ) 2 2CM _ ( ') 
wn =: B B + 1 - H~ ~l ak - an , wn =: 3" B + 1 - 5 an + Hi 13nlln + 1\ - 1\ , 

W~ =: - Ca~, 

where 0' ::'n't 1
0

=1 means that O':;:,'t equals the given form with 0 =: 1, etc. As we expect from the reciprocity theorem 
we have Q! :;:''1'' =: Q! ~m and {3;:'.r =: i3:;:;'m. 

The real part of g can be evaluated from the scattering theorem (33). Equations (36) and (37) give 

R (A kl-- k
6

y2 [C2+ B
2(YfO(rH10(kl + 111(r)111(k)+ Y11(r)Y11(kl)~_ kBV2[2C 00_ ~yeOn 

eg r, - 9 3 (Hf)2 (Hh2 (H1l2 'J 90 0'00 3Hl 1 r 

x ~ (O'~~'~m'(k) + {3~~'Y~'(k)) + (k - r)- !!.3(l'i
H

1\rl + I1Hll~rl) ~ (O'l~'~:n'(k) + i31~'Y~:n'(lt)) + (k - rl] 
n', m' 2 2 n', m' 

where the symbol (It - r) represents a repetition of the double sum with k and r interchanged. The orthogonality of 
the surface spherical harmonics has been used as well as 

f [yni»]2dn(p) =:41T/3, p=:eO,el,ol. (69) 

The form of the multipole coefficients shows the existence of terms that depend on both parameters Band C. In 
the limit as B - - 1 and C - - 1 we obtain the corresponding results for the rigid ellipsoid. 

The scattering cross section is obtained from (40) by using (68) with r=:k. For the special case k=:r=:xl , we have 

~m(~I) =: 60 .. , Y~(Xl) = 0, 

and 

A A ik3 V ( B ) ik5 V (00 00 00 00 00 00 00 Img(xl , Xl l:::: -3- ,C - HI + 30 0'00 + O'u + 0:22 + 0'02 + 0'20 + 0'13 + 0'31), 

A A _ _ v_- C2 + 00 0'11+0'13 k s .. ' ( B2) k 8V2 
[ B 00 00] 

Reg(xp x 1 ) -- 9 3Rt - 45 CO'OO- 3 Hi . 

B. Spheroids 

(70) 

(71) 

We obtain the corresponding results for spheroids by setting a2 =:~, with Gt > a2 for the prolate, and a1 < a2 for the 
oblate. We use the spheroidal coordinates 

X =:pcosB {X2}=(p2_h2)1/2sine{C?S¢} Q,,;B";1T,0,,;¢<2JT, 
1 'X3 3 mn¢ , 

{ 
h3 coshw, al > a2, 

p= O";w<+~ 
ih3 sinhw, al < a2, ' 

h3 = (a~ - a~)l /2 ={:} I h31, aj ~ a2, 

and the definitions 

o =: at! a2 ~ 1, al ~ a2, 

r-{ (02 _1)-1/2In[0 + «12 _1)1/2], 
- (1- ( 2)"1/2 tan-1[(1- ( 2)1/2/0], 

The elliptic integral appearing in the solution of the triaxial ellipsoid can be evaluated exactly for spheroids: 

IO(p) ={ (1/2h3}ln((p + h3)/(p - h3)], al > a2, 10 = r/ a2, Il(p) =: (l/hi)(I0(p) _ 1/ p], 
(1/ih3) tan-1(iha/ p), al < a2, 

2( _..L ( 0 3p \ 
II.. p)- 4hi I (p)- 3p2_hV' 
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2 2( 3 f,0( P(3P2-5h~)J 2() 2() 3 (O() 3p2 -2h,) 
IA,=/I p)= Shj t p)- 3(p2_h~)2 , 12 P =/3 P =- 2hl I P - 3p(p2_ h3) , 

3( 25 r o( 15p2 - 4h~ ] 3 3 75 (,0 p 25P ) 
II P)=4h~t P)-3p(5p2-3hi) ' 12(p)=/3(p)=-16h§~/(p)-6(P2-h§)-6(5P2_hh' 

3'( _ ()_£( O( + 2ph3 7p _~) 
II P)-/123 P - Sh~ I p) 15(p2-hi? -15(p -hi> 15p , 

3'( _ 3' __ 5_( 0 _ Sphi p(3p2_ 5hj~) 
12 P)-I3 (p)-- 16h3 I (p) 15(p2-h§)3 - 3(p2_h~) , 

Also 

HI=1 +B(cJT-l)/(oz-I), H~=Hl=1 +B(02-1)- (oT-l)]/2(02 -1), 

H~ = 1 + B{3[202 + I)(OT- 1) - (02 - 1)]}/2(02 _1)2, H~,= Hi = 1 + B[3(OT-l) + (2(12 - 3)«12 - 1)]/4«12 - 1)2, 

H~ =H~ = 1 + B(02 + 1)[ (02 - 1) - 3(OT- 1)]/2(02 - 1)2, Hf = 1 + B(402 + 1)[3(202 + 3)(OT-l) - 5(02 - 1)]/4«12 _ 1)3 

Hf' = H123 = 1 + B(202 + 1)[ (202 - 7)(02 - 1) + 15(OT- 1)]/S«12 - 1)3, 

H~ = H~ = 1 + B(402 + 11)[ (2a2 + 3)(02 -1) - 3(402 + I)(OT -1) l!16(a2 _ 1)3, 

Hf =Hr =1 + Bl<02 _1)(Sa1 _1S02 + 15) -15(oT -1}1/16(02 _1)3, 

If we substitude the above values of the elliptic integrals, as well as a2 = a3, hi = 0, 

- h~= - h~=3(A - ai)=A' - ar= f(AI - ar)= 5(Az- ail = 5(A3 - ail =Af - ai=Ai - ai =A~- ai=-1(A - A') 

(77) 

(7S) 

= - ~(AI - AD = - t(Az - Ai) = - t(A3 - A3) (79) 

in the solutions of the triaxial ellipsoid we obtain the corresponding solutions for the spheroids. 

The scattering amplitude g for 

k = (casu, sinu, 0), r = (case, sinecoscj>, sine sincj» 

is given by 

'k3 2 [ 2 yi-I()y!-I(k)] 'kS ~ 
Img(r,k)'" 1 a

3
1a2 C-B"6 I rHl + 1 3

a
OIa "6 Y;, y;:';'Y:'(r)Y:;:'(k), 

i=1 i n, m J;:n 

Reg(r K)'" _ k6aia~ (C2 + B2 t yj-l(r) Yt-
1
(k») _ k 8

aM [2C 00 _ ~ t y!-I/f )( Y; II-Um'Y!!l'(k»)]_ (k _ r) 
, 9 3 1=1 (H~f 90 Yoo 3 /01 HI \J;:n' YIn' n' ' 

.00 _ 00 _~ (2 _ 3C)(cr 1) ~ C + 1 [B(2cr _ 1) + 2(a2 _ 1)] + 4(a
2 

- 1)(C - B) 
120 - Y02-g - -gB+l 9H~ , 

00 _ 2B C + 1 _ 4B(2a2 + 1) ~1 __ 2B a2 + 1 
Y22 - 9 B + 1 9H~ , 22 - 9 ~' 

00 2 [2 -2 J 2B ( -2 4aZ(cr - 1)2(C + l)(H~ - 1)2 
Yll = (Hi)2 B aT + o-(B + C) - 5HI 20- + 3)+ . (402 + 1)(2a2 + 3)Hi Hr ' 

,11 2 [ Z ] 2B (2 ) S(a2 - 1)2(C + I)(H~ - 1)2 
Yll = (H1)2 B aT + B + C + 5m a - 6 + (4(J2 + 1)(4a2 + 1l)H1H~ , 

,20 02 ,20 02 ,22 B C + 1 
YZ2=Y22 =- YZO=- Y 02 =- 2YZ2=g B+ I' 

A A A 

When k = r = Xl' we obtain 
'k3 2 ( B) 'kS 4 3 

Img(xl' Xl) '" l a
3

1a
2 C - HI + 1 3

aola2 6 Y~~ 
I no n'-O 

(
A A _ k6aM( 2 B2) k

8
aM ( 00 B ~ 00) 

Reg xl'x l )-- -9- C + 3(HD2 - 45 CYoo- 3HI~ Ytn' 

For the prolate near-sphere we have 

TO-I =e2[t +i-e2 + te4] + O(e 8), 
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(**) 

(S2) 

(S3) 
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where e2 = (0'2 - 1)/0'2 is small and 0' z; 1; for the oblate near- sphere we have 

iO' - 1 = (e2/0'2)[ -1 + t e2/0'2 - t e4/0'4] + 0(e 8
), 

where e2 = 1 - 0'2 with 0' $1. Using either (84) or (85) we obtain 

H~ = 1 + B/30'2 + 0(e2) (i = 1,2, 3), H~ =H~,= H~ =H~ = H~ = 1 + 2B/50'4 + 0(e2), 

H¥=Hi' =H~ =Hr =H~=Hr =H123=1 +3B/70'2 + 0(e2). 

These reduce to the corresponding values for the sphere as 0' -1 + or 0' -1-. 

For the case of the needle, llt» az, 

7= (2/0') InO' + 0(1/0') - 0, 0' - + "", (0'7- 1)/(0'2 - 1) = (2 I nO' - 1)/(0'2 - 1) + 0(1/0'2) - 0, 0' - + "", 

we obtain 

Hi, m, Hi -1, HL HL H~" HL H~, H~, Hr, H~, Hr, Hg, HL H123 -1 + B/2. 

For the case of the disc, al« a2, 

7=11/2 +0(0') -11/2 + 0(0')-11/2, 0'- 0 +, 70'-1- -1, 0'- 0 +, 

we obtain 

Ht HL H~, H~" Hi, HL H~, Hr, HM' -1, HI. HL H~, Hf, Hr, H123 -1 + B. 

For both cases we have 
3 3 

:0 H~=3 +B, 
1=1 

H~ +Hi,+:0 H~==5+2B, 
i=1 

3 

:0 (Hf + Hf) + H123= 7 +3B. 
1=1 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

The appropriate form of r; for the needle or disc is obtained from (SO) and (81) by substituting (88) or (90) into the 
coefficients y:::;:". 

C. Sphere 

The sphere corresponds to the degenerate ellipsoid a i = a, h~ = 0, i == 1, 2, 3; we have 0 ~ P < "", /.L == I' == 0, with 
r = p. The elliptic integrals reduce to 

I O(p)=I/p, Il(p)=1/3p3, 11(p)=I1,(p)=Il(p)=1/5p5, Il(p)==Il'(p) = I 123(P) =1/7p7, (92) 

H~ = 1 + B/3, H~ =H~,=H~ = 1 +fB, Hf=Hf =H123= 1 + tB • (93) 

Specializing the solutions for the ellipsoid, we obtain in terms of the Legendre polynomials P n(k, f) =P n(cose), 

rf>t = rf>o= 1, (94) 

If we let B - - 1 and C - - 1, we obtain the solutions for a rigid scatterer: 

(99) 

The corresponding scattering amplitude is 
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Img(r, It) "'ik 3a3[ - t + ~ PI (cose)) + ik 5a5[t - to PI (cos e) +f7 P 2 (cose], 

Reg(r, k) '" - k6a6[ t +12 P j (cose)) + k 8a8[n +-10 PI (cos e)) • 
(100) 

The above result for the rigid sphere coincide with those given in Ref. 9, p. 376 (where k= - X3l. 

O. Physical considerations 

In this section we discuss the effects of the shape as 
well as the orientation of the scatterer on the total en
ergy scattered. We consider only the leading term of 
the scattering cross section, i. e., the k4 term. For the 
general ellipsoid we have 

4rr 0!k4 (2 B2 3 i~ ) 
as=--g- C +3 E (H~)2 , (101) 

where H~ == 1 + BQ., Qn = VI~, n == 1,2,3 and 2:~=1 Q n = 1. 
Note that a1 > a 2 > a 3 implies that 0 < Q1 < Q2 < Q3 < 1 
and, therefore, 

1/ (B + 1)2 < 1/(H~)2 < 1/ (H~)2 <: 1/ (Hl)2 < 1. (102) 

Hence, the maximum as occurs for incidence k =x1 and 
the minimum occurs for incidence k = X3: The larger 
the projection of the ellipsoid on the line of incidence 
(the larger the path length through the scatterer), the 
larger the energy scattered. If we average a 5 over 
orientations, we obtain 

4rr v2k4 ( B2 3 1) 
(as);::: --9- C

2 + 9 ~ (H~)2 . (103) 

For spheroids we have 

'" 4rr0!k
4 [C2 BZ (cosa)2 B2 (sin~)2J (104) 

as 9 + 3 Hi + 3 H~ . 

We give Table I for the values of Q1 == (aT- 1)/(02 -1) 
and Q2 == a (a - T)/2 (a2 - 1), where a and I are given in 
(75) and (76). 

We have (1 + BQ1) '3' (1 + BQz) for a 1 ~ a2. Therefore, 
a s becomes maximum at a == 0 for prolate, and at a 
= rr /2 for oblate spheroids. 

If we average as over orientations, we obtain 

As the oblate spheroid approaches the disc or the pro
late spheroid approaches the needle, the maximum of 
a s increases, and the minimum decreases. Also, as the 
oblate or prolate spheroids approach the sphere, the 
maximum of as decreases, and the minimum increases; 
both tend to the scattering cross section for the sphere, 

(106) 

The radius of the sphere that scatters the same energy 
(to the order k4) as that obtained form the ellipsoid 
averaged over orientation is given by 

t, B2 3 (1 )2)f 3B2)-1 
0/\C2+9~1 H~ \C

2
+ (B+3)2 . (107) 

For the special case of equal densities, B = 0, (81) 
becomes 
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(108) 

The terms of order k 6 and I?8 for Reg(r, k) are 
monopole contributions, i. e., if the densities are equal, 
then the first two nonvanishing terms of the scattering 
cross section are independent of the directions of inci
dence and observation. 

APPENDIX 

If we denote by E':: and F':: the Lame functions of the 
first and the second kind, and by 

lE:;'(p, Il, v) = E'::(p)E:;'(Il)E:;'(v), 

and 

1F:;'(p, /J., v)=F':(p)E:;'(/J.)E:;'(v) 

f
~ du 

= (2n + l)lE; p (E~(U»2S(U) 

the interior and exterior ellipsoidal harmonics, we 
have the following expressions of the ellipsoidal 
harmonics in terms of Cartesian coordinates: 

lEo ==1, lEl=hlh2h3~:' i==1,2,3, 

lE~ = (A - ai){A - a~){A - a~)( ~ A ~ a~ + 1) = lE~(A), 
lE~ = lEHA'), 

6-1 h h h hi 1E2 == 1 2 :rlX ZX3- , 
Xi 

~I-l == hlh2h3(AI - ai){ 1\ - a~){Ai - a~) Xhl (t 1\ X~ :1 + 1) 
I n=1 I an 

=IE~i-l(AI)' 

lE~1 == lE~i-l(Aj), 

lE~ = hih~h?-IX2X 3. 

TABLE 1. 

Prolate 

(J Q 1 Q2 

1.001 .32483 .33483 
1. 01 .32985 .33482 
1.1 .30823 .34585 
1.5 .23296 .38351 
2 .17356 .41322 

10 .02028 .48985 
103 .00000 .49999 
106 .00000 .50000 

Oblate 

(J Ql Q2 

0.001 .99843 .00078 
0.01 .98448 .00775 
0.1 .86079 .06959 
0.5 .52720 .23638 
0.7 .43205 .28396 
0.9 .36184 .31905 
0.99 .33618 .33165 
0.999 .33516 .33016 
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The Cartesian monomials are expressed in terms of 
surface ellipsoidal harmonics as follows: 

hi i 
xl= h h h IEj, i=1,2,3, 

1 2 3 

2 (-l)lhi(pt +a~) 
Xi = h~h~h~ 

(
(A' - al)EhJ..L )E!(II) - (A - a~)E~ (J..L )Ei (II) 

x A-A' 

- (A - a~)(A' - ail), 

XIX2XS _ IEG21 

X I h j h j h2hS ' 

2_ (pi +a7J1 12(pf + a~)1!.i{l + 2/ijn EI(/-L)Ei(v) 
XjX n - hhh 5 1 1 

1 2 S 

(_l)nh~ [(' 2)E21-1( )E2I -1 ) 
+ hih2h~(Aj - AD Al - an 3 /-L S (II 

- (AI - a~)E~j(J..L)E~j(lI)t, i, n = 1, 2,3, 

3 (p2+a2)1/2 
XIX~S= fl 1 h2n EH/-L)EHII), 

n:f1 n 

where p~ == p2 - a~. 

*This work is part of the author's Ph. D. dissertation, in the 
Mathematics Department of the University of Illinois at 
Chicago Circle under the guidance of Professor Victor 
Twersky. The wo rk was supported in part by the N. S. F. 
Grant GP 33368X. 
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Macrocausal aspects of the S matrix related to the LSZ 
asymptotic condition 

H. D. Doebner and W. Lucke 

Institut fur Theoretische Physik der Technischen Universitiit Clausthal. Clausthal-Zellerfeld. Germany 
(Received g March 1976) 

By use of the LSZ asymptotic condition in Hepp's form it is shown that one may substitute functions s(x), 
which converge sufficiently rapidly to I in positive timelike direction, for the step function 9( x 0) in the 
usual LSZ reduction formulas. This result. partly related to earlier work by Toll, does not depend on 
microcausality of the interpolating field. Choosing s( x) such that s( x) = 0 outside the forward lightcone, a 
complete reduction to vacuum expectation values of T products of the interpolating field thus shows that it 
is sufficient to know the »-point Wightman distributions at pairwise timelike arguments XI""'X" in order to 
calculate the S matrix completely. It is argued that this fact indicates some macrocausal property of the S 
matrix introduced by the LSZ asymptotic condition. 

1. INTRODUCTION 

In Wightman quantum field theory the interplay between 
the axiom of microcausality (in short, localih') and prop
erties of the S matrix has not yet been fully understood. 
It appears that some results of axiomatic quantum field 
theory usually derived by locality still remain valid 
when locality is replaced by some physically better mo
tivated and mathematically weaker assumption. For ex
ample, Haag's asymptotic conditions may be directly 
derived from the cluster property. 1 The cluster prop
erty is physically more fundamental (for short-range 
forces) and mathematically weaker than locality: Rapid 
decrease of the field commutator in spaceUke direction 
is sufficient for a derivation of the cluster property by 
translation invariance and the spectrum condition. 2 

Rapid space like decrease of the field commutator is 
also sufficient for a derivation of simple dispersion re
lations. 3 We suppose that connected with the LSZ asymp
totic condition and the hyperbolic propagation character 
of Klein-Gordon solutions is some mechanism intro
ducing certain macrocausal properties into the S matrix 
whether the interpolating field fulfils locality or noto It 
is the aim of the present paper to indicate such a mech
anism. We derive x-space representations of the S 
matrixjor1llal!:\, indifferent to microcausality (see Sec. 
3, Part BL 

For 2-2 scattering such a representation was heu
ristically given already by Toll. 4 He modified the ori
ginal LSZ asymptotic conditionS by introducing a "causal" 
factor s(x) with 

(V. the interior of the forward lightcone), i. e., he 
postulated (Toll's asymptotic conditon) 

x ao[s(± (x - y»(cJ> jA(x) I >lr)] 

in addition to the original LSZ asymptotic condition (in 
which s is dropped). Corresponding modification of the 
original LSZ reduction technique led him to some x
space representation of the 2-2 scattering amplitude 

with a primitive domain of analyticity (in p-space) even 
larger than that derived by locality. However, Toll's 
approach met two difficulties: 

(i) The relation between Toll's asymptotic condition 
and the LSZ asymptotic condition was not exactly known. 

(ii) Introduction of the factor s(x - :\,) which implies 
the p-space analyticity properties unfortunately destroys 
the support properties in p-space which follow from the 
spectrum condition in the conventional approach. There
fore the usual methods of enlarging the domain of an
alyticity are not applicable. 

While the first difficulty is overcome by the present 
paper, a solution to the second problem is still 
outstanding. 

The paper is organized as follows. In Sec. 2 we in
troduce a rigorous version of Toll's general reduction 
formalism as a consequence of the LSZ asymptotic con
dition and some" causality" property of the test space. 
In Sec. 3 we first derive Toll's reduction formula and 
then completely reduce the whole S matrix to vacuum 
expectation values of modified T products which differ 
from the usual ones in that the step function e(xO _ yO) 
is replaced by a causal multiplie r z (x, .v) [= s (x - .:v) for 
example). In Sec. 4 we prove that at least the Schwartz 
space 5(R8

) has the" causality" property required for 
the rigorous version of Toll's reduction formalism. 
Section 5, finally, is devoted to a short discussion of 
our results. 

2. ASYMPTOTIC CONDITION FOR FIELDS OVER 
CAUSAL TEST SPACES 

A. LSZ asymptotic condition and causal test spaces 

Let C (Rl) c 5(Rl) be some standard test space. 6 De
!lote by C (R") its complete n-fold 7f tensor product,7 by 
C(R") the Fourier transformed space, and by C'(R") the 
topological dual of C (R") , Let A (x) be a scalar Hermitian 
field over C (R4) describing particles with mass m > 0, 
and let D be its invariant dense domain in the Hilbert 
space H; hence 
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Without loss of generality8 we assume D such that9 

for all integers 1/" 0 and for alllz EC(R4n). The vacuum 
is written !1 ED. Denote by (A~x) * the creation ope rator 
for an ingoing (1- - co), resp. outgoing, (t - + 00) particle 
with wavefunction 

~(x) = (21T)-3 121 ~ t(p) exp(- ipx) 
. 0 2w' , 

p =Wp P 

(1) 

and denote by Lex C Ii the linear span of all ingoing resp. 
outgoing 1'-particl.,e states (1'= 0,1,2, ... ) with p-space 
wavefunctions in C (R3rL Then the LSZ asymptotic con
ditionlo demands Lex C D and 

lim I dx(.v I A(x) I <I»rp(x; t) = (.v I (Aty I <I» (AI) 
t _:tOO 

where 

For the annihilation operators Atx corresponding condi
tions are imposed. 

Because of Eq. (I), condition (AI) implies asymptotic 
relations of the form 

= I £. d\'(.v I AC'I) ..• A(x n)A (rl (AtJ * I <I»I1(x, y), (All) 

with 

lz(;·,y)cC(R4(n.I», .vED, <I>ELex> (fEC(R4), 

which are necessary for the usual reduction of the S 
matrix. It is worthwhile to study the asymptotic (1- ± 00) 
properties of rp(x; I) in order to get further relations of 
this type. 

Consider the special case 

(3) 

in which we have 

rp(x; t) = 2ilz(x O 
- I) (3oj(x) + ih'(x O_ I)j(x). 

For t - + co, rp(.; t) will rapidly decrease outside the 
forward lightcone with vertex at an arbitrary fixed 
space-time pointll .1'. The same holds for the general 
case [see inequality (10) in Sec. 4, Part A). Hence 
hey, .'\,) rp(x; t) with II EC (R4 (n.I» should rapidly decrease 
for x -)' ci V. and even for (x, :\,) outside the region 

So we expect the t - +00 limit of the left-hand integral 
in (All) to be independent of the form of the generalized 
function (.v I A(xI) .•• A(x n)A(y)A(x) I <I» outside the region 
(x, Y) E G(J.l), e. g., the matrix element can be multi
plied with a multiplier z(x, y) in C(R8 ) without changing 
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the limit of the integral, provided z(x, .'1') rapidly tends 
to 1 within the region (x,y) E G(J.l) for J.l-+ 00 • This in
dicates a large class of multipliers z(x,.v) inC(R8

), at 
least for C =.5, fulfillingl2 

lim (1 - z(x, y»I1C\', y)rp#(x; t) = 0 (4) 

inC(R4(n.2» for arbitrary hEC(R4(n.I» and (pEC(R4). 

Such multipliers can be used instead of smooth e 
functions in the reduction of outgoing particles if, in 
addition, 

lim z(x, y)h(x, y)rpff(X; t) = 0 
t·-~ 

(5) 

in C (R4 ("+2» holds. The same z (x, y) can also be used 
for the reduction of ingoing particles if (4) and (5) hold 
for z(x, y) = (1- z(v, x» as well. Hence an interesting 
question is whether C (Rl) is" causal. " 

Dejinitioll 1; C(RI) is called ca/lsal iff there is a causal 
m/lltiplier z(x,.1') inC(R8

), i.e., iff there is a multiplier 
z(x, y) in C (R8

) with suppz ~ V. fulfilling (z.(y, x) =z.(x, y) 
=z(x, y»: 

(i) limt •• ~(1 - z.(x, y»hC~, y) rp!! (x; t) = 0 in C (R4 
(n.

2», 

(ii) limt •• ooZ.(x, 1')h(.\', :l')rp*(x; t) = 0 in C(R4(n.2», 

for arbitrary lz E ((R4 (n.I» and (p c C (R4). 

In Sec. 4 we explicitly construct a causal multiplier 
in S(R8

) which is also Poincare invariant. Causality of 
Jaffe spaces will be proved in a separate paper. 

We summarize the main results of our discussion by 
the following lemma. 

Lemllla 1: Let PCr, .") be a derivative of A(xl ) •• , 

XA(xj)A(,')A(x j•I )·· ·A(xn), j", ,I. IfC(RI
) is causal then 

there are multipliers z.(x, y) = z.(.1', x) in ((38) such that 
for all .v(·)ED, <I>ELex' llf=C(R4(n.I», (pEC(R4) and for 
all multipliers !d.'·, y) in C (R4 (n.l», 

lim r d.\- rl,' rlx(>V I PCI-, 1') i .v') 
t _:too . 

Xz.(y, xr)IzC¥, O)rp"(y; Ok'-'·, y) = 0 for 1'= 1, ... ,1/ 

(A III) 

holds and the LSZ asymptotic conditions imply 

lim r ri.'i:d\' dx(.v I PC\-, y)A(x) I <I»z:(x, ,,)Iz(.\-, .,,)rp(x; 0 
t _:too v 

(A IV) 

lim f dxd)' dx(.v I PC\-, .1')A(x) I <I»zf(x, y)lz(x, y)rp*(x; t) 
t .. :t oo 

== r dxd\'(.vlp(.\-,.1')Atx I <I»h(.\-,yL (AV) 

B. Toll's asymptotic condition 

As mentioned in the introduction, Toll proposed4 on 
a heuristic level an asymptotic condition containing a 
factor s(x - y). Now, a rigorous mathematical meaning 
of Toll's ansatz can be given if s(x - }') is a multiplier 
in ((R 8), 

lim f dx(.vIA(x) I <I»s(±(x-)'»rp(x, t) 
t"::l:oo 
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For causal z(x,.v) = s(x - y) this relation can even be de
rived from (AI) since, e. g. , 

lim (1- z(x, 1')h(y)<;oJi(x + 0; I) = 0 

in the topology of C (R8) implies (11(0) '* 0), 

lim (1- s(x - a)<;0# (x; t) = 0 

However, an asymptotic field theory based only on 
Toll's condition (AV!) meets serious difficulties. A de
rivation of Toll's reduction formula4 requires asymptotic 
relations of the type (AIII)-(AV) which can be obtained 
only formally from (A VI); so one has to postulate these 
relations or one has to add an additional assumption to 
get them, A very weak postulate of this kind, valid for 
a sufficiently large class of standard test spaces, is 
causality of the test space. But in causal test spaces the 
asymptotic relations (AIII)-(AV) can be directly derived 
from the LSZ asymptotic condition and Toll's condition 
has no technical advantage as compared with the LSZ 
condition. 

3. REDUCTION OF THE S MATRIX FOR CAUSAL 
TEST SPACES 

A. 2-particle scattering amplitude 

Consider the 2-partic1e matrix element 

(5 _ 1) = (0 I (Af4 A f 3 _ Af4L\f3 )(Ah)*(Afl )* I 0) 22 out out i~in in in 

with 

fj(p) = <Pj(Wp,p), <;OjEC(R4) forj=1,2,3,4 

and insert for A:~ the LSZ asymptotic condition. 

Then (Kx '" a~ - L: ~=l a~ + 11/
2), 

(5-1)22= lim i r d"(Ky(OIA~~tA(~')(A{~)* 
a ,b - +00 ' 

holds, 13 where 

<;OJ (X; 0, b) '" (211)-3 /2 J dp Oa,b(p)CPj(P) exp(- ipx), 

° (P) exp(i(p° - Wp)O) - exp(i(p° - wp)b) 
a,b 211i(p0 _ wp)2wp 

Here the identity 

Kx<;Oj(x; a, b) = i(<;Oj(x; a) - <;OJ (x; - b» 

has been used. Choose a causal multiplier z(x, y) in 

(6) 

C (R8) and apply to (A{~)" the asymptotic relations (AU!) 
and (A IV) . The result is the following lemma, 

Lemma 2: Let <;OJ EC(R4) and definefj(p)=cpj(Wp,p). 
If z (x, y) is a causal multiplie r in C (R8) then 

(0 I (A~~0~~t - A~!A{~)(A{~)* (A~~)* I 0) 

= -lim lim f dXd)' 
a,b"+oc c,d ...... ac 

. (Kxz (y, x)Ky(O I A~~tA(y)A(x)(A~~) * 10» 
x <;o:i*(y; a, b) <;02(X; c, d) = - lim lim J dx dy 

a,b-+DQc,d-. eo 
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· (K,Kyzlv, x)(nIA~~0(v)A(x)(A~!)* I 51» 
x <;oH,,; a, b)<;02(X; c, d) 

holds. 14 

This lemma shows that the e function in the corre
sponding heuristic LSZ reduction formula can be re
placed by any causal multiplier to get a rigorous result. 
The same holds for the well-known reduction formulas 
with T or R products. Here the modified products 

T.(x,Y) '" z(x, y)A(x)A(y) + z(y, x)Al1')A(x), 

Rz(x, y) '" - iz(x, y)[A(x), A(y) L 
have to be used, 

A complete reduction to vacuum expectation values 
needs two further similar steps and gives, e. g., 

(5 - 1)22 = lim lim lim lim 
a3,b3 ... eoa2,bz"ooQ4,b4-lOal,bl-eo 

Xz(x2, x l )Kx3
(51IA(x4) .• ·A(xl ) I 0» 

, <;ot(x4; a 4, b4 )<;o;(X3 ; a3, b3)<;02(X2 ; a2, b2) <;01 (xl; al' bl ). 

Assume15 z(x, y) = s(x - ~,). Then, by translation invari
ance of the theory, this may be written inp_-space [as 
an identity for generalized functions over C (R16) ]: 

out(P', k'lp, !?)In - In(P', k'ip, 1l)ln 

= lim lim lim lim Ot4,b4(P') 
a3~b3"OQ a2,b2 ... oo a4,"4"' oo al,bl"' oo 

• ot3 ,b
3 
(k') oa2,b

2 
(- Il) oal,bl (- p) (211)5 /2 

X O(p' + I?' - P - k)T22(P', I? ';p, k), 

where 

T22(- k4, - k3; kl> 1l2 ) 

_ (2 2) (2 2) (2 2)fd ~l d ~2 d ~3 
= - hl - 111 h2 - m k4 - m (211)9/2 

· exp[i(~lkl + ~2(1?2 + Ill) + ~3(1l3 + k2 + k l » ls(~3)S(~2) 

• s(~1)(nIA(~3}j(0)A(- ~2)A(- ~2- ~l) 10) 
(~j = X j+l - Xi' J = X 3) 0 The generalized function 

(nIA(~3)j(0)A(- ~2)A(- ~2- ~l)ln) 

is implicitly defined by 

f d~ld~2d~3(0IA(~3)j(0)A(- ~2)A(- ~2- ~1)10) 

x(j dyhe,l, ~l' ~2' ~3)) 

= f dXl .. 0 dx4(K
x3 

(0 I A(x4) • 0 • A(Xl) 10» 

This result, here derived from a LSZ field theory over 
a causal test space, is an exact formulation of Toll's 
reduction formula (Ref. 4, Sec. 3), for which the primi
tive domain of analyticity was extensively discussed in 
Ref. 40 
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B. Complete reduction of the S matrix to vacuum 
expectation values of causal T products 

Define" causal T products" by substituting a causal 
multiplier z(x, y) in C (RB) for the step function e(xO _ 3,0) 
in the formal definition of the ordinary T productsl6 

[Sr being the set of all permutations of (1, ... , r) l: 
1 forX=¢, 

T..(X) =' A(x) for x={x}, 

~ [fil Z(Xa(P),XU(P+I} A(xu(I»" 'A(xu(r» 
uE:S r p=1 ] 

for X={xt. ... , x r }. 

Then a complete reduction of the S matrix to vacuum 
expectation values of T. products may be based on the 
following simple reduction formula, well known for or
dinary T products. 

Lemma 3: Let ;p E:C (R4) and define j(p) = ;P(wp , p). 
Moreover, let X be a (possibly empty) finite set of vari
ables x j E: R4. If Z (x, :\,) is a causal multiplier in C (RB) 
then, in the weak topology of C', the relations 

(<I> I (A~ut)* T.(X) - T.(X)(A{n) * I <I>') 

= -limi J dX(Kx(<I> I TAXU {x}) I <I> '» <;0 (x; a, b) (Rl) 
a ,b~ cJO 

and 

(<I> IA~ut T.(X) - T.(X)A;n I <I>') 

= lim i r dx(Kx(<I> I T.(XU {x}) I <I> '» <;0* (x; a, b) 
tl ,b .... oc • 

(R2) 

hold for arbitrary <I>E:Lou!> <I>'E:L 1n . 

Proof: For X= ¢ relation (Rl) resp. (R2) is a direct 
consequence of the LSZ asymptotic condition and (6). 
Now let X be nonempty, say X={x I , ••• , x,}. Then by 
(AN) and definition of T z we get 

(<I> I TAX)(A{n) * I <I>') 

x (<I> I A(xu (I» ... A(xa(r »A(Xr+l) I <I>')<;o(xr +l ; - b). 

Moreover, if a' E: Sr+1 is such that a'(r+ 1) *r+ 1, (AlII), 
implies 

r 

lim J dXr+1 Il z(xa• (p), xu' (p+I» 

b - '" p=1 

Summation over all equations, obtained so far, yields 

(<I> I TAX)(A{n) * I <I>') 

= lim J dX(<I> I Tz(X U {x}) I <I> ') <;o(xr +l ; - b). 
b- 00 

Similarly, using (AV) for l_+oo instead of (AN) for 
t - - 00, we conclude with 

(<I>' I (T.(X»*A~ut I <I» 

= lim J dX(<I>'1 (T .. (XU{x}»* I <I»<;o*(x; a). 
a-"" 

Thus (Rl) is a direct consequence of both equations 
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(take the complex conjugate of the latter) and identity 
(6), again. The proof for (R2) is analogous. _ 

By application of the simple identitiesl7 

At,,fl (A;~)* I n) 
p=1 

= t (nIA:x(A~~')*In)Il (A:~)*ln), 
,0'=1 p~p' 

(nl A~x(A;~')* In) 

= (nIA~ut(A{~')* In) = «nIA~~;(A{D)* 1 n»*, 

we get the following relations: 
k 

(nl Il A~~tT.(X)(A{n)* 1 <I>') 
p=1 

= a.~i_n;"" if dx (Kx(n 131 A~~t T .. (XU {x}) 1 <I>') 

k 

x<;o(x;a,b)+~ (nIA~~;(A{n)*In) 
,0'=1 

x (n I Il A~~t TAX) I <I>'), (7) 
,0'#,0' 

k 

(<I> I A~ut T • (X) Il (A{:) * 1 n) 
p=1 

= a.I;::;", i J dx (Kx(<I> 1 T.(XU {x}) P~I (A;~)* I n~ <p*(x; a, b) 
k 

+ E (nIA~ut(A;~')* 1 n)(<I> 1 T.(X) Il (A;~)* In). (8) 
,0'=1 p:f.p' 

These relations already show that complete reduction 
to vacuum expectation values of T .. products is indeed 
possible. It is merely a matter of economical notation 
to get a neat reduction formula. 

Following Ruellel8 we introduce the" convolution 
product" 

(F * G)(M) =' E (F(L)G(M \L» 
LCM 

for complex valued set functions F, G defined for finite 
subsets M of Z' ='{1, - 1, 2, - 2, ..• }. This product is 
commutative and associative, hence corresponding 
brackets for multiple * products are not necessary. Re
cursively define 

11+1 n 

Il*Gv ='Gn+1 *Il*Gv 
v=1 v=l 

for n = 0, 1, 2, .. '. Note that 

{
I for M= ¢, 

I(M) =' . o otherWIse, 

in order to ensure 1 * G = G. Analytic functions of G 
can be defined via power series expansions preserving 
their particular properties. For example, the defini
tions of In and exp, 

~ ( 1)"-1 v 
In*G = L ---- n*(G - 1) for 0 < G(¢) < 2, 

v=l V ;=1 

'" 1 v 
exp*G ='~ -,n*G, 

v=OV'j=1 

preserve the relations 

exp*(ln*G) = G for 0 < G(¢) < 2 
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and 

In*(exp* F) = F for 0·' (exp* F)(<b) .. 2. 

In order to apply the * product formalism to the re
duction of the S matrix, choose 'i sequence of test func
tions CPl' ({;_l, ;;;2' ;;;-2"" fromC(R4) and define 

S(M) ~(rll )L A~~t /\ (A~~)* i rl) for lvI ~ Z' 
j>l) k<:() 

(tjCr) defined according to (1) L Moreover, choose an 
arrangement 1't, )'2' .•• of the set Z' and define the se
quence of functions 

Fu"" 1, 

F.(M) ",{S(ll!) if M={rj , r.r for some f;: j, 
J ° otherwise, 

U = 1, 2, "' . L Finally, define 

Sn(,\I) = lim'" lim r I1 aX j 
al,bl" oc. un,b n ... ~ j(~ .'1, ',R n 

. en (fl.Cr R; u., iJklK,)( rli _ [1. A:~t 
•. -11, Rn 1~.\I: '~+\Rn 

XT z(. {xA) ,_ n, (A;~')*\rl\ 
jre.\!_ Rn 1 ~_M ,,\i .. \Rn / 

forll=0,1,2, .. ,C0, where 

R -Z' ,,-r·· Z' '>01 
~= , 1V.=i.J~ • :)< r. 

Then (7) and (8) may be used in the compact form 

This yields complete reduction of S to vacuum expecta
tion values of T. products, 

I1* F j * S~. 
jCJ 

More explicitly this reads 

where 

I"M ={p. (AI ,NJ x (M" NJ :{j, /c}; {j', /c 'r = if! 

for different (j, Il), (j',!? ') E Pr, 

Note that, in the * product formalism, the usual im
plicit definition of the connect ed part s Sc of the S matrix 
is given by 

S= exp*Sc' 

Since 
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we have 

Sc=ln*S=ln*S~+.0 F j , 

iEN + 

Thus we finally obtain19 the following theorem. 

Theorcm 1: Let z (.\', :\,) be a causal multiplier in 
C (RS) Let 11, 1/' be positive integers wLth 1/ + 1/'. 2. 
Finally, let CP1" ., CPm CP_1,"" CP.n' (~C(R4). Then the 
reduction formula 

= i n+n' lim , .. lim (aXt ' dx n+n' 

holds, the order of the iterated limits being arbitrary 

Rcmar!?: As usual, the truncated vacuum expectation 
values of the T. products are defined by 

(rli T.(xt, ... , x n) I rl)T 

=£(-1)'_1(7_1)! I, n (rl!T,(xit,,,,,x
jk 

)Irl), 
1=1 .IIEP, (n) JE.M J 

where M={J1, .. ,J,rEP,(II) iff it is a partition of 
{1, . , ., nr into 7 (nonempty) disjoint ordered subsets J r 

with the ordering in each J = (h, .. "j.) being the nat
ural relative ordering of intege rs. 

C. LSZ asymptotic condition restricted to essentially 
nonoverlapping asymptotic states 

Up to now, within the Wightman framework, S the LSZ 
asymptotic condition can only be proved in the form 
(AI) if L ex is replaced by its subset of essentially non
overlapping states20

: 

Definition 2: The state <I> ELex is called csscntially 
lI01l01'erlappinf[ iff it is a (finite) linear combination of 
ingoing resp. outgoing 1'-particle states (r= 0,1, Z, ... ) 
with p-space wave functions /(Pt, 00" Prj vanishing to
gether with all their derivatives at points where at least 
two of the arguments Pt, .. , ,Pr coincide. 

But we immediately realize that all considerations 
and results of Sec. 3, Part B still apply to the case of 
this restricted form of the asymptotic condition provided 
that all states corresponding to p-space wavefunctions 
of the form 

j(Pt, .. " p,,) = q;'l (WD1 , Pt)· , . cPj)w
Dn

, Pn), 

n=2, 3,'" 

are essentially nonoverlapping for every arrangement 
;'v }-2' .•• of {1, 2, 3, ... } as well as of {- 1, - 2, - 3, . 0 • }. 

The results of Sec. 3, Part A remain valid even with
out any additional restriction on the asymptotic states. 
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4. CAUSALITY OF THE SCHWARTZ SPACE S (R 1 
) 

A. Characterization of causal mUltipliers in S(R8
) 

As discussed in Sec. 2, Part A, causality of the test 
space is related to the asymptotic (t - ± "") behavior of 
functions of type (2) stemming from their intimate con
nection with smooth Klein-Gordon solutions. For gen
eral <pix; t) this behavior may be derived from the 
representation21 

(pCp) = (21T)2~(P)j(p), ~E S(R4), j E S(R3), 

for which we have 

Since for smooth Klein-Gordon solutions we have the 
physically plausible inequality22 

Ily/l"'lf(x) I <A(1 + IIx- yllN) for XE R\ Y ER4\V, 

(9) implies23 

lIy 11'" I <pix; t) I ~ .(.o=t dx' /I.'\' liN I <i>(x - x')a~f(x') I 

.;A' f.,o=t dx'(1 + 11), - x'/lN) 

x max{ I <i>(x - x') I, I o~<i>(x - x ') I} 

.;A '(1 + lI(t- yO, x- y)II N ) 

for x E R4, J' E R4\V. (10) 

By simple multiple partial integration with respect to 
p in (2) we also have the inequality24 

I XO - t I nllx/lr I D~ <p(x; t) I < An,r,o< (1 + Iltln, (11) 

valid for arbitrary x E R4' t E Rl, a E Z!, and n, r E Z O' 

Here we adopt the usual notation 

3 

Zo=NoU{O}, Z!=ZoxZoxZoxZo, D~ =' n (o/"}. 
j'O 

Inequalities (10) and (11) are sufficient to prove the 
following useful criterion for conditions (i) and (ii) of 
Definition 1. 

Theorem 2: Let k. be a multiplier in S(R8), i. e. , 
k. E () M(R 8

), with 

lim max I1rlU;~k.(x,Y)1 =0 
J.I. 4+11C1 (x,J/)EG::t (jJ) 

for all r E Z 0 and a, (3 E Z!, where 

C.(/.l) ={(x, y) E R8: (x _ y)2 > /l, ±(XO _ yO) > O}. 

Then 

limk.(x, y)h(x, y)<p#(x; t) = 0 

holds in C (R4(n0 2l) for arbitrary h EC (R4(nOl l) and ;p 
EC(R4). 

Proof: We prove Theorem 2 for the" -" sign only, 
the proof for the" +" sign being analogous. 

(c) 

Since no restriction was imposed on the tempered 
test function h and since partial differentiation as well 
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as complex conjugation does not change the required 
properties of k_, it is clearly sufficient to show, e. g. , 

lim max max /lxlr 
t-_c ;ER4n (x,YlE R 8 

x I k.(x, y)h(x, y)D~<p(x; t) 1= 0 

for arbitrary r E Zo, a E Z!. As k_ E () M(R8
) and h 

E S(R4(n+l l), an even stronger statement is obtained if 
one or both of the factors k_, h are dropped. Thus, in
troducing the notation 

and defining the four regions (s = (2r + 2)"1] 

Cl(t) ={(x, y) ER8: y O_ x°.; I II"}, 
C2(t)={(X,y)ER8

: IxO-tl"'ltlI-, 

C3 (t)={(X,y)ER8 :yO_xO> ItI S
, (x_y+ltl"')2",0}, 

C4(t) ={(x, y) E R8: yO _ XO > I tiS, 

(x - y + I t I S)2 < 0, I XO 
- t I < I t II

fulfilling 

C1 (I) U ... U C4(t) = R 8, 

we only have to prove the four relations: 

lim .max max IIxll'lh(x,y)D~<p(x;t)I=o, 
1 --'" xER4n (x,YlEGl (I l 

lim max IIxlrID~<p(x;t)1 =0, 
t __ '" (x,YlEG

2
(t) 

lim max IIxliT I k.(x, y)D~ <p(x; t) 1=0, 
t __ '" (x,YlEG

3
(t) 

lim max max IIxllrlh(x,")D~<p(x;t)I=o. 
t --'" xER4n (x,YlEG4 (t l -

Proof of (12): .(12) is just a consequence of the fact 
that by virtue of (11) 

.max max (1 + Iyo I r+l)(1 + 1).,0 _ t I rOl) 
xER4n (x,YlEGl (I l 

X IIxliT I h();, y)D~ <p(x; t) I 

(12) 

(13) 

(14) 

(15) 

cannot increase faster than Itl r when t-- "", whereas 

min (1+ lyOlrol)(1+ ly O_tl ro1
) 

(x ,Y lE GI (I) 

increases like I t I rol because of 

max{lyOI, Ixo- II}'" (I t 1- It IS)/ sin CI(t) for t < O. 

Proof of (13): This relation holds because 

max I XO - t I (r ol l / "lIxliT I D~ <pix; t) I 

cannot, again due to (11), grow faster than I fir when 
t - - "", whereas 

min I X O _ t I (rol) /" 

(x,YlE:GZ(1 l 

will increase like 1 t Ir
•
1

• 

Proof of (14): Inequality (11) shows that 

max !IxII'I U; <p(x; t) I 
(x,YlEG3 (tl 

can be majorized by A + Bit I T with suitable constants 
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A, B independent of I. Therefore (14) is an immediate 
consequence of our assumptions on 1<_ because 

G3(1)~. G.(1/12S). 

Proof of (15): Since 11X11
r can be majorized by a finite 

linear combination of expressions of the type 

ill rl SII" 11'211x _ " + III SW3 

(1'1,1'2' r3 being nonnegative integers not greater than r), 
it is sufficient to prove 

lim.max max 1/1"(l+llx-.,'+III"11)' 
t __ c x<? R4n (x,Y)EG

4 
(tl 

x 1 h(~', y)D~<p(x; I) 1 = 0 

instead of (15). Using inequality (10) we get the 
inequality 

(1 + 1~·O\)(1 + Ilx-.r + \I\SII> I t Irs 
x(l+llx-,,+ I/lsIWlhC¥,y)D~<p(x;/)i 

(16) 

.,: AI (1 + 1.,·ol)1zc~·, r) 11/1"(1 + 11(/_ (x0_ 1'0+ \11 S), y)IIr+I) 

for all (x, 1') E G4(t), 1 E RI, where A is a suitable con
stant independent of (x, v) and I. Because he\-, y) is an 
element of 5(R4 (n+I», the maximum value of the right
hand side can not increase faster than iii '(2r+l) for 
(x, Y) C G4 (I) when 1-- 00. The inequality 

min max{\yOI, IxO_1'o+ \/I'I} 
(x,>lEG4 (I) 

> 11\ /2 - III S for 1 "' 0 

shows that the increase of 

min (l+I"OI)(l+llx-y+il\'11) 
(X, YlCG 4,t) 

is at least as ii, when 1-- 00. Thus (16) must be valid 
and the proof of Theorem 2 is complete, • 

B. Construction of Poincare-invariant causal multipliers 
in 5 (R8 ) 

By Theorem 3 we may easily construct a causal multi
plier in 5(R 8

) which is also Poincare invariant: 

Choose a, b' 0 and <p (::: () M(RI ) with <p(q) = 1 for q ~. a 
and <p(q) = 0 for (j' b, Then z(x, y) = 8(x° _ yO)<p«x _ .1')2) 
is a Poincare invariant multiplier in 5(R8

) with support 
contained in T'+< Therefore we only have to check condi
tions (i) and (ii) of Definition L Theorem 3 tells us that 
both conditions are fulfilled if (C) holds for k,,(x,.v) 
= z.(I", r) as well as for "'.(x, y) = 1- z.(x, .v), (zJy, x) 
=z.(x,y)=z(x,1')). But (C) is trivially fulfilled since in 
both cases 1<.=0 in G.(a). Thus z(x,:r) is a causal 
Poincare invariant multiplier in 5(R8L 

5. CONCLUSIONS 

We have seen that a rigorous version of Toll's reduc
tion formalism is already a consequence of Hepp's rig
orous version of the LSZ asymptotic condition. Al
though this leads to primitive domains of analyticity 
even larger than those derived by locality, there are 
serious difficulties in trying to enlarge these domains 
for derivation of dispersion relations. 
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Complete reduction of the whole S matrix by the new 
reduction formalism showed that for a calculation of the 
S matrix we need only know the n-point Wightman dis
tributions at arguments .\\, .. " xn with large limelike 
separation, e. g., 

(X j -Xk)2 Jl for.i*k, O<Jlfixed. 

From this point of view the axiom of locality seems 
very far removed from any direct physical interpreta
tion concerning the S matrix. Up to now, we have not 
been able to give a satisfactory analysis of what our 
results precisely imply. We have the feeling, however, 
that they indicate some macrocausality property-per
haps even of the type investigated by Chandler, 
Iagolnitzer, and Stapp25_as a consequence of micro
causality of the asymptotic field to which the interpolat
ing field is to converge in some well specified way by 
the LSZ asymptotic condition, It should be worthwhile 
to further analyze this problem. 

We conclude with the remark that our results may 
appear surprising for the following reasons: 

(i) If the cluster property holds, then by Haag's 
asymptotic condition! for nonoverlapping states (in con
nection with a lemma by Ruelle on smooth Klein-Gordon 
sOlutions11

) one can show that for a calculation of the 
S matrix it would be alternatively sufficient to know the 
vector valued distributions A(.\) .. oA(x n)~ at arguments 
with large pairwise spacelil<e separation. 

(ii) For the usual T products Hepp proved2u that the 
off- shell extrapolations 

n (P~ - l1/2)<~ \ T(PI, ... ,Ph, - Pk+I' .. 0, - Pn) I ~> 
j=1 

of the S matrix are C ~ in all the variables P ~ - wp. si-
} 

multaneously within some neighborhood of the origin 
when integrated over Pt, ... ,Pn with nonoverlapping test 
functionsfj(pj) €i)(R3 ). If this were also the case for 
the T. products, then, by Theorem 1, the S matrix 
would be trivial. Actually, there is no analogous proof 
for the T. products. 

lR. Haag, Ph~·s. Rev. 112, 669 (1958): J. Bummerstede and 
W. Lucke, Commun. Math. Phys. 37, 121 (1974). 

2R. Jost, The general theory of quantized fields (Am. Math. 
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IOFor comparison with the original (nonrlggrous) LSZ asymp
totic condition note that, with (p(p) = (2rr)2j(p)';i: (p), 

f dxA (x)cp(x;t) = 1dX(f dx' A(x')I/i(x' - x~To j(x) holds. 
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145 J. Math, Phys., Vol. 18, No.1, January 1977 

17we assume stabillty of the vacuum and of the I-particle 
states, of course. 

1sD. Ruelle, Statistical Mechanics (Benjamin, New York, 
1969); for further applications of this product see also G.C. 
Hegerfeldt, Commun. Math. Phys. 45, 137 U 975). 

I~Compare H. Araki, Varenna lectures U968). 
2oK. Hepp, Commun. Math. Phys. 1, 95 (1965); H. Araki and 

R. Haag, Commun. Math. Phys. 4, 77 (1967); W. Lucke, 
Ref. 11; J. Bummerstede and W. Liic:ke, Ref. 1. 

21W. Lucke, Ref. 11. 
22H. Araki, Ref. 11; W. Lucke, Ref. 11. 
21For a simpler, though physically not as transparent, self

contained proof of inequality (10) see also H.D. Doebner and 
W. Lucke, internal report, International Centre For Theore
tical Physics, Trieste, IC/72/20. 

24Compare K. Hepp, Helv. Phys. Acta 37, 639 (1964), 
Eq. 0.2.5). 

25C. Chandler, Phys. Rev. 174,1749 (1968); D. lagolnitzer 
and H.P. Stapp. Commun. Math. Phys. 14,15 (1969). 

H.D. Doebner and W. Lucke 145 



                                                                                                                                    

Graded Lie algebras: Generalization of Hermitian 
representations 

M. Scheunert, W. Nahm, and V. Rittenberg 

Physikalisches Institut der Universitiit Bonn, Bonn, Germany 
(Received 30 August 1976) 

Hermitian representations play a fundamental role in the study of the representations of simple Lie 
algebras. We show how this concept generalizes for classical simple graded Lie algebras. Star and grade 
star representations are defined through adjoint and grade adjoint operations. Each algebra admits at most 
two adjoint and two grade adjoint operations (we list the various possibilities for all classical simple graded 
Lie algebras). To each adjoint (grade adjoint) operation corresponds a class of star (grade star) 
representations. The tensor product of two star representations belonging to one class is completely 
reducible into irreducible representations belonging to the same class. This property is very useful since in 
general the finite-dimensional representations of classical simple graded Lie algebras are not completely 
reducible. 

1. INTRODUCTION 

Much work has been done lately on the classification 
of graded Lie algebras. All simple graded Lie algebras 
are now known. 1_,1 An important part of the simple 
graded Lie algebras are the so-called classical simple 
graded Lie algebras: For them the odd part of the 
graded Lie algebra is completely reducible into one or 
two irreducible subs paces . The classical Simple graded 
Lie algebras are the spl(n, m) (n> m'" 1), spl(n, n)/zn 
(n'2), osp(2p,nz) (p,m,-,l), b(n) (n>3), andd(n)/zn 
(n"> 3) series and the exceptional algebras whose Lie 
algebras are sl(2) xG 2 • sl(2) xo(7) and sl(2) xsl(2) xsl(2). 
respectively.2 In this paper we shall deal mainly with 
the classical simple graded Lie algebras. 

A natural question is: Do the representations of sim
pie graded Lie algebras have properties similar to those 
of simple Lie algebras? Such a possibility could be ex
pected at least for the classical simple graded Lie 
algebras because in this case the underlying Lie algebra 
is reductive (semisimple times Abelian). An indication 
that this is not the case comes from a theorem by 
Djokovic and Hochschild5 which states: 

The only graded Lie algebras jor which all jinite
dimensional representations are completely reducible 
are the direct products oj osp(2p, 1) algebras and semi
Simple Lie algebras. 

This theorem singles out the osp(2p, 1) algebras as 
possible candidates for our analogy. As will be shown, 
however, in this paper and through an example in the 
next one,6 the properties of the representations of these 
algebras are different in several aspects from those of 
Simple Lie algebras. 

We are still left with the problem: Do the representa
tions of the classical simple graded Lie algebras have 
som e common properties? As will be shown the answer 
to this question is rather negative. 

In the present paper we generalize the concept of 
Hermitian representations. (Remember that the finite
dimensional representations of the compact Simple Lie 
algebras are equivalent to Hermitian representations.) 
In this way we not only try to get a better insight into 
the properties of the representations of graded Lie al
gebras but also to deal with one consequence of the 

Djokovic-Hochschild theorem: The tensor product of 
two irreducible representations is in general not com
pletely reducible. We show that it is possible to find 
classes of representations for which complete reduc
ibility holds. 

We first define the generalization of the usual adjoint 
operations for graded Lie algebras (see Sec. 2). For the 
even generators this is done in the usual way. For the 
odd generators this can be done either through a trivial 
generalization [see (2.8)-(2.11)] leading to an adjoint 
operation or through a specific new procedure [see 
(2.14)-(2.17)] leading to a grade adjoint operation. To 
adjoint (grade adjoint) operations correspond star (grade 
star) representations. One then shows that every star 
(grade star) representation in a graded Hilbert space is 
completely reducibleo The tensor product of two star 
(grade star) representations can be made a star (grade 
star) representation by choosing a suitable scalar pro
duct. There is, however, a crucial difference between 
star and grade star representations: Whereas the scalar 
product on the tensor space will be positive definite in 
the former case it will be indefinite in the latter (i. e. , 
the tensor product of two grade star representations 
will no longer be a representation in a Hilbert space). 
Thus the tensor product of two star representations is 
always completely reducible but this is generally not the 
case for grade star representations. 

In Sec. 3 we examine the possibility of defining other 
"generalized adjoint operations;" it turns out that for the 
classical simple graded Lie algebras we are essentially 
left with the possibilities considered in Sec. 2, namely 
the adjoint and grade adjoint operations. There is, how
ever, a major difference between the adj oint operations 
for simple Lie algebras and the adjoint (grade adjoint) 
operations for classical simple graded Lie algebras, 
namely the latter are "not uniquely defined" (more 
precisely, if we choose any adjoint operation for the 
even generators one can define in general several adjoint 
(grade adjoint) operations for the odd generators). This 
will also be evident from Sec. 4 which deals with the 
explicit construction of adjoint (grade adjoint) opera
tions. Since to each adj oint (grade adj oint) operation 
corresponds a class of star (grade star) representations 
we have also to discuss the problem of the equivalence 
of the various classes. This is done in Sec. 5. 
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Our results are summarized in Sec. 6 where we list 
for almost all the classical simple graded Lie algebras 
[the r(au a2 , a3 ) and the spl(2,2)/z2 algebras have not 
been studied] the possible classes of representations. 
It turns out that [perhaps with the exception of certain 
spl(n,n)/zn algebras] we can have at most two classes 
of star and two classes of grade star representations. 
Some algebras, however, have no star and/or no grade 
star representations. The problem of constructing ex
plicitly the various classes was not considered. In the 
subsequent paper6 we shall consider in full detail the 
examples of the osp(2,1) and spl(2,1) algebras. 

2. STAR AND GRADE STAR REPRESENTATIONS 

To begin with let us describe the background which 
led us to define the star and grade star representations. 
It is a classical theorem by Weyl that all finite-dimen
sional representations of a semisimple Lie algebra are 
completely reducible. This important theorem is not 
true for simple graded Lie algebras. In factS all finite
dimensional representations of a simple graded Lie al
gebra L are completely reducible if and only if L is 
isomorphic to one of the algebras osp(2p, 1), P? 1. 

Because of this result it is natural to look for other 
criteria which imply complete reducibility. In classical 
group theory there is a simple means to ensure com
plete reducibility: One dem ands that the representation 
space should be a Hilbert space and that the representa
tion should be unitary. The corresponding requirement 
for a representation of a real Lie algebra to be com
pletely reducible is that the Lie algebra should be rep
resented by skew-Hermitian operators. 

Finally, let La be a complex Lie algebra and let 
Q- Q+ be an adjoint operation in La, i.e., a mapping 
of La into itself which satisfies 

(aP + bQ)+ = a* P+ + b*Q+, 

[p, Q ]+ = [Q+ , P+], 

(Q+)+=Q, 

(2.1) 

(2.2) 

(203) 

for all P, QE La and for all complex numbers a, b. (The 
asterisk denotes complex conjugation.) It is well known 
that 

(2.4) 

is a real form of La and that, conversely, every real 
form L~ of La determines in a natural wayan adjoint 
operation in La such that (2.4) is valid. 

Now let p be any representation of Lo in a finite
dimensional Hilbert space. Then the restriction rI' of 
p to Lf; is skew-Hermitian if and only if 

(2.5) 

for all QE La' and the representation p is completely 
reducible if and only if pR is completely reducible. A 
representation with the property (2.5) will be called a 
star representation. 

We remind the reader that this is a well-known con
cept in the theory of (associative) star algebras. Fur
thermore, we note that in the mathematical literature 
it is customary to conSider conjugations of La instead 
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of adjoint operations. A conjugation of La is a mapping 
T of La into itself which satisfies 

T(aP + bQ) = a*T(P) + b*T(Q), (2 0 1') 

T([P, Q]) = [T(P), T(Q)], (2.2') 

(2.3') 

for all P, Q E La and all complex numbers a, b. However, 
it is obvious that T is a conjugation if and only if - T is 
an adj oint operation. 

In the present work we try to generalize the concepts 
of an adjoint operation and of a star representation to 
graded Lie algebras. It turns out that because of the 
grading the Eqs. (2.1)-(2.3) may be generalized in 
essentially two different ways. Similarly (and connected 
with this fact) for a linear operator acting in a graded 
Hilbert space there is a natural modified definition of 
the adjoint operator [see Eq. (2.12)]. 

Let us now give the details. Suppose that V = Va ED VI 
is a finite-dimensional graded vector space with even 
subspace Va and odd subspace Vr' We assume that on 
V there exists a nondegenerate Hermitian form, de
noted by a bracket (: >, such that Va and Vr are orthogo
nal with respect to this form, i. e. , 

(2.6) 

A t the present stage we would gain nothing by de
manding that ( j) should be positive definite. Neverthe
less, if ( i) is positive definite then we call V a graded 
Hilbert space. 

As is well known for any linear operator A in V the 
adjoint operator A+ (with respect to ( I » is defined by 

(A+x Iy) =(x lAy) (2.7) 

for all x,y E V. 

Now recall that there is a natural procedure to con
vert the vector space of all linear operators in V into a 
graded Lie algebra, denoted by pl(V). The well-known 
rules for the adjoint operator imply that 

The adjoint of an even (resp. odd) element is even 
(resp. odd), (2.8) 

(aA + bB)+ = a* A'" + b* B+ , 

(A, B)+ =(B+ ,A+> , 

(2.9) 

(2.10) 

(2.11) 

for all elements A,B of pl(V) and all complex numbers 
a,b. 

Definition 1: An adjoint operation in a graded Lie 
algebra L is a mapping A - A+ of L into itself which 
satisfies the conditions (2.8)-(2.11). 

On the other hand, a well-known rule of thumb says 
that in going from normal Lie algebras to graded Lie 
algebras it is natural to make a change of sign at every 
place where "two odd objects have been interchanged." 

Suppose, then, that A is a homogeneous (i. e., even or 
odd) linear operator in V of degree Ci. We define the 
grade adjoint operator At of A by 
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(2.12) 

for all homogeneous elements X,YE V of degrees ~,7J. 
One should note that this definition depends on which of 
the subspaces Vo, VI is even and which is odd. 

In the special case where ( ) is positive definite let 
us give the grade adjoint operator also in matrix nota
tion. Choose an orthonormal basis c1 , ••• , cn ' C"I"'" 

cn+m of V such that e1 , ••• , en is a basis of Vo and 
en+

1
, ••• , cn+m is a basis of VI' If A is any linear opera

tor in V and if (~ ~) is its matrix (written in block form) 
with respect to our basis, then the matrix of At is equal 
to ~: s·f) , where the plus sign denotes the norm al 
Hermitian conjugation of a matrix. 

Obviously, we have A. =A+ if A is even. It is easy to 
check that 

for all homogeneous linear operators A, B of degrees 
c;, i:J. Furthermore, for the graded Lie algebra pl(V) 
we derive the following rules: 

The grade adjoint of an even (resp. odd) element 
is even (resp. odd), (2.14) 

(A, B/ = (_I)"'B(Br ,Ar), 

(AT)' = (-I)"'A, 

(2.15 ) 

(2.16) 

for all homogeneous elements A,B of pl(V) with degrees 
Oi ,i3 and for all complex numbers a, b. Note that because 
of condition (2.14), Eq. (2.16) is equivalent to 

(A,B)r = _(At ,Bt ). (2.16' ) 

Definition 2: A grade adjoint operation in a f[raded 
Lie alf[cbra L is a mapping A - At of L into ilself 
which salisfies Ihe conditions (2.14)-(2.17). 

Definition 3: Lcl L be a f[raded Lie alf{ei>ra equipped 
wit h an adjoint (resp. f{rade adjoint) operation, and let 
V be a graded rector space as described a/Jot'c. A slar 
rcpresentation (resp. a f{rade star representation) of 
L in V is a graded reprcsentation p of L in V which 
satisfics 

p(N) = p(A)+, [resp. p(Af) = p(A)t] (2.18) 

for all clements A E L. 

As explained above we expect the following proposi
tion to be valid. 

PropOSition 1: El'ery star (resp. grade slar) rep
resentation p of L in a f{raded Hilbert space V is com
pletely reducible. 

Proof: The argument is standard. Let V be a graded 
subspace of V which is invariant under the representa
tion p. We have to find a complementary invariant 
graded subspace V' of V, i.e., an invariant graded sub
space V' of V such that V is the direct sum of V and 
V'. Evidently there is a natural candidate for V' , 
namely the orthocomplement Vi of U in V, 

Ul.={XEV!(X!y)=O forallYEU}. 
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(2.19) 

It is easy to check that Vi is graded. Furthermore, 
V is the direct sum of V and VJ. (since ( I> is positive 
definite) and the star (resp. grade star) property of p 
implies that Vi is invariant. 

Next we shall discuss tensor products of representa
tions. Let p,p' be two graded representations of a 
graded Lie algebra L in some graded vector spaces V, 
resp. V'. Then the tensor product p:s p' of p and pi is 
the graded representation in V:s V' defined by 

(p:t; p')(A)(x:s x') =: (p(A)x):sx' + (_l)O:lx:s (p'(A)x'), 

(2,20) 
for all homogeneous elements A E L, X EO V, x' E V' of 
degrees, respectively Cl , ~, e. 

Suppose now that p and p' are star representations. 
We denote both the Hermitian form on V and that on V' 
by the same symbol ( i) and define as usual a Hermitian 
form on V:s V' by 

(x SO x' I y:s y') = (x ! y)(x' I y') , (2.21) 

for all x,yE V and X',Y'E V'. 

Then it is easy to check that the tensor product p C:9 p' 
is a star representation, too. Note that if V and V' are 
graded Hilbert spaces, then V:s V' is also a graded 
Hilbert space. Hence in this case we can use Proposi
tion 1 to prove the complete reducibility of p:y p' • 

Let us now consider the tensor product of two grade 
star representations p and p'. In that case we define 
(in agreement with the rule of thumb mentioned above) 
the Hermitian form on V:s V' by 

x'!)':;', \,') =: (-I)I'~(xl,,>(x'I'I")' (2.22) 

for all homogeneous elem ents x, Y E V and x' ,.,,' E l" of 
degrees, respectively, ~, 1], e ,11' . 

Once again it is easy to see that the tensor product 
p.:y p' is a ~rade star r~presentation with respect to the 
Hermitian form (2.22). However, even if V and V' are 
graded Hilbert spaces, the Hermitian form defined in 
(2.22) is not positive definite and hence Proposition 1 
cannot be applied in this case. Nevertheless, the forJ)'l 
(2.22) can be useful to reduce a given tensor product 
of grade star representations. 

One might suspect that the definition (2.22) is not 
appropriate. However, as will be shown in the sub
sequent paper, 6 there exists an irreducible grade star 
representation p of spl(2, 1) in a Hilbert space V such 
that p:S P is not completely reducible. In this case 
there cannot exist any positive definite scalar product 
on V:s V with respect to which p:S P is a grade star 
representation. 

3. GENERALIZED ADJOINT OPERATIONS IN THE 
CLASSICAL SIMPLE GRADED LIE ALGEBRAS 

Let L = LoEB Ll be a graded Lie algebra with Lie al
gebra Lo and odd subspace L1" We are going to discuss 
generalized adjoint operations in Lo As shown in Sec. 
2 there are at least two possible definitions of such an 
operation (see Definitions 1 and 2). In order to see 
whether there are other "reasonable" possibilities we 
shall list four properties which every generalized ad
j oint operation should have. Of course, the adjoint and 
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grade adjoint operations as defined in Sec. 2 meet these 
requirements. It will turn out that for the classical 
simple graded Lie algebras there are" essentially no 
other possibilities. " Moreover, our discussion will 
provide the means for the construction of all generalized 
adjoint operations. 

Our four conditions are the following: 

(I) A generalized adjoint operation is additive and maps 
Li into Lp i = 0, 1. 

According to (I) a generalized adjoint operation is 
completely determined by its restrictions to Lo and to 

L l • 

(II) The restriction of a generalized adjoint operation 
to Lo is an adjoint operation of the Lie algebra Lo, i. e. , 
it is a mapping Q ~ Q+ of Lo into itself which satisfies 
Eqs. (2.1)-(2.3). 

(III) The restriction of a generalized adjoint operation 
to Ll is a bij ective semilinear mapping a of Ll into it
self, i. e., it satisfies 

a(aU + b V) = a*a(U) + b*a(V), (3.1) 

for all U, V E: Ll and all complex numbers a, b. 

Finally, the adjoint representation of Lo in Ll should 
be compatible (in some sense) with the adjoint operation 
Q~ Q+ in Lo and the mapping a. We shall demand that a 
generalized adjoint operation acts on the commutator 
of an even element Q with an odd element U like a nor
mal adjoint operation, i. e., 

(IV) We have 

a«Q, U)= -(Q+, a(U» , (3.2) 

for all elements Q E: Lo and U E: L 1 • 

As we have mentioned in Sec. 2 the real subalgebra 

(3.3) 

is a real form of Lo. The existence of a mapping a: 
Ll - Ll which satisfies the conditions (III) and (IV) is 
then equivalent to the requirement that the adjoint rep
resentation of Lo in Ll should be self-conju{{ate (with 
respect to Lt-), i. e., that it should be equivalent to its 
complex conjugate representation (with respect to L~). 
In particular we conclude that (12 commutes with the 
adjoint representation of Lo in L 1 • 

In the following we assume that UE are given an ad
joint operation in Lo and a mappin{{ a of Ll into itself 
which satish the condilions (I)-(IV). To exploit th~se 
conditions we construct a new graded Lie algebra L, 
whose Lie algebra and odd subspace are again Lo, respo 
Lu but whose multiplication ( , >~ is defined by 

(P,Q)~=(P,Q) if P,QE: Lo, 

(Q,U)~= -(U,Q)~=<Q,U) if QE:Lo' UE:L1, (304) 

(U, V)~= _(a-leU), (1-1(V»+ if u, V E: L1" 

It is easy to check that L is indeed a graded Lie algebra. 
Let us define a mapping 

w:L-L (3.5a) 
by 
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(3.5b) 

Then it is easy to see that w is a bijective mapping 
which satisfies 

w(aA + bB) = a*w(A) + b*w(B), 
(3.6) 

w«A, B» =(w(A), w(B»~, 

for all,.,A,BE: L and all complex numbers a,b, In parti
cular L is simple if and only if L is simple. 

From now on we shall assume that L is a classical 
Simple graded Lie algebra. (These algebras have been 
studied in Refs. 1 and 2; a Simple graded Lie algebra 
is called classical if the underlying Lie algebra is reduc
tive.) Dis regarding the possibility L = r (al , a2 , ( 3 ) for a 
moment, we know from Ref. 2 that the product mapping 
Ll x Ll - Lo of a claSSical simple graded Lie algebra is 
determined up to a factor once the Lie algebra Lo and the 
adjoint representation of Lo in the odd subspace Ll11re 
given. By construction both items agree for Land L, 
hence we conclude that there exists a nonzero constant 
t such that 

(U,V)~=-t(U,V), (3.7) 

i. e., such that 

(U, V)+ = t (a(u) , a(V» , (3.8) 

for all U, V E: L1" 

The case L = real> az, ( 3) is more complicated because 
of the parameters au a2 , a3 and because of the auto
morphisms of L o=sI(2)xsl(2)xsl(2) which interchange 
the three Lie algebras sl(2). We shall not go into the 
details here but state without proof that in this case 
Eq. (3.8) is valid if (for example) the adjoint operation 
in Lo= sl(2)Xsl(2)xsI(2) maps every factor st(2) into 
itself and if, furthermore, the parameters au a2 , a3 are 
reaL 

The result (3.8) is very agreeable; it says that an 
adjoint operation in Lo and a mapping a: Ll - Ll which 
satisfy the conditions (I)-(IV) automatically act on the 
anticommutator of two odd elements as they should. 

As a consequence of (3.8) we note that 

(3. g) 

for all U, V E: Ll 0 

It is obvious that the mapping a (if it exists at all) is 
not completely fixed by the conditions (III) and (IV), 
since its "normalization" is completely arbitrary up to 
now, We shall use this rem aining freedom to redefine 
a in such a way that an adjoint or grade adjoint operation 
in the sense of Sec. 2 emerges. To this end, recall that 
L1 is either irreducible (under Lo) or it decomposes 
into the direct sum of two irreducible subs paces . We 
consider both cases separately. 

Case (A) Ll is irreducible 

Then a 2 is a scalar multiple of the identity 

(3.10) 

with some nonzero complex number s. In fact s must 
be real since 
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(3.11) 

The reality of s follows also from the relation 

S2/ t /2 = 1 (3.12) 

which is equivalent to Eqo (3.9). 

If s > 0 (resp. s < 0) the adjoint representation of La 
in Ll is called real (resp. quafernionic). 7 

Evidently the mapping a is only fixed up to a nonzero 
factor. Introducing 

a=ca (3.13) 

with a nonzero complex number c it is easy to see that 
in the real (resp. quaternionic) case the number c can 
be choosen in such a way that 

(U,V)+=(~(U),o(V» and 02 =1 
(3.14) 

(resp. (U, V)+=-(o(U),a(V» and a 2 =_1), 

for all U, VE L 1 • In this way we have obtained an ad
joint (resp. grade adjoint) operation in L. Note that the 
number c and, therefore, the mapping a are fixed up 
to the sign. 

Qlse (B) Ll decomposes info the direct slim of hro 
iYreducible subspaces Lt, Li 

(3.15a) 

recall that in this case 

(L~,Li) =(L~,Lfj ={O}, (Li,Lfj =La. (3.15b) 

From our list of classical simple graded Lie algebras2 

we know that the representations PI and P2 of La induced 
in Li, resp. L~, are inequivalent except in the case L 
=spl(2,2)/z2' This special case is more complicated 
than the others and will be dis regarded. Hence we may 
suppose that PI and P2 are inequivalent. 

Since we assume the existence of the mapping a, i. e .• 
since we assume that the adjoint representation of La 
in Ll is self-conjugate, there exist the following two 
possibilities (a) and (b): 

(a) The representations PI and P2 are self-conjugate. 

In this case it follows that 

(3.16) 

Let 
(3.17) 

be the mappings induced by a. Because of the irreduc
ibility of PI and P2 it follows that 

with some nonzero real numbers SI.S2' and condition 
(3.9) is equivalent to 

sIS21112=1. (3.19) 

From this equation we conclude that SI and 8 2 are either 
both positive or both negative, i. e. , that the representa
tions PI and P2 are either both real or both quaternionic. 

The mappings al and a2 are only fixed up to a nonzero 
factor. Let us introduce the new mappings 

~ ~ 

01=C 1a1 , a2 =C2 a2 (3.20) 
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with nonzero complex numbers c1 ' c2 and let us combine °1 and O2 to a mapping 0 of Ll into its eLL Then it is 
easy to see that we can choose c1 and c2 in such a way 
that in the real (resp. quaternionic) case we have 

(U, V)+=(a(U),a(V» and a 2 =1 
(3.21 ) 

for all U, VE L I • In this way we have obtained an ad
joint (resp. grade adjoint) operation in L. Note that in 
this case a free phase factor eil/> (¢ real) is left: Our 
concLusions remain unchanged if we choose ei ¢c1 and 
e-i~C2 instead of c1' resp. c 2 . 

(b) The represenlation P2 is equil'alenl to Ihe complex 
conjugate of PI and vice l'ersa. 

In this case our assumptions imply 

(3.22) 

let 

(3.23) 

be the mappings induced by 0. Since PI and P2 are ir
reducible we conclude that 

(3.24) 

with some nonzero complex number s, and Eq. (3.9) is 
equivalent to 

/st/=1. (3,25) 

Here again the mappings ai' 02 are only fixed up to a 
nonzero factor. Introducing the new mappings 

(3,26) 

with some nonzero complex numbers cl • c2 and combining 
al and 0'2 to a mapping a: LI - LI it is easy to check that 
the numbers c1> c2 can be chosen in such a way that 

(U, V)+=±(a(U).a(V» and 02=±1, (3.27) 

for all U, V c: L J • Note that both choices of thc sigll are 
possible, i. e .. that we can construct an adjoint opera
tion as well as a grade adjoint operation in L. Further
more, there is still a free nonzero real parameter d 
left: Our conclusions remain unchanged if we choose 
c J ' r1 and c2 d instead of c l , resp. C 2 • 

Our results may be summarized as follows: 

If a mapping a: Ll - L J which satisfies the conditions 
(III) and (IV) exists at all, then we may suppose that 

(V) (U, V)+=±(a(U),a(v», for all U, V:::c Ll' 

and, furthermore, that 

(VI) a 2 =± 1. 

(3.28) 

(3.29) 

Stated differently, we may then suppose that the ad
joint operation in La and the mapping a define an adjoint/ 
grade adjoint operation of the graded Lie algebra L. 

As we have seen, the mapping a is not uniquely de
termined even if we demand that the conditions (V) and 
(VI) should also be satisfied. This is in part obvious: If 
a satisfies the conditions (III)-(VI), then - a does as 
well. 

In the case where Ll is irreducible there is no otller 
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freedom. On the other hand, if L1 decomposes into the 
direct sum of two irreducible subspaces 

(3.30) 

[see (3.15a) and (3.15b)], then there is a free parameter 
left. 

This latter nonuniqueness is connected with some 
trivial automorphisms of our algebra. In fact, let g be 
any nonzero complex number. We define a linear map
ping </11 of L1 into itself by 

</11 (Ul ) =f{Ul if U1 E: I.L 
(3.31) 

!/il(U2)=!.U2 if U2E:L~. 
f{ 

Then it is easy to see that /f!l combined with the identity 
mapping of Lo onto itself yields an automorphism /f! of 
the graded Lie algebra L. 

Consequently, the mapping 

(3.32) 

also satisfies our conditions (III)-(V!). Moreover, if we 
are in Case (B), (a) then the mappings ap a2 are changed 
into 

(3.33) 

whereas in Case (B), (b) the mappings ap a2 are re
placed by 

at'=(1/igi 2 )al , a{= if{12 a2 • (3.34) 

The Eqs. (3.33) and (3,34) define what we call a one
parameter family of adjoint or grade adjoint operations. 
Note that the scalar factors appearing in (3.33) [resp. 
(3.34)] are phase factors (resp. are positive). Hence 
whereas the change of sign of a can be achieved via 
(3.33) this is not possible using (3.34). 

With the change of sign of the mapping a and with the 
procedures described in (3.33) and (3.34) we have re
obtained exactly the free parameters which were men
tioned in the discussion above. "Normally" the adjoint 
(grade adjoint) operations belonging to a one-parameter 
family (i.e., a and a') should be equivalent. In Case 
(B), (a) there is no additional freedom, whereas in 
Case (B), (b) we are left with the change of sign of the 
mapping a. With this understanding we have in Case (A) 
two adjoint or two grade adjoint operations, in Case 
(B), (a) there is essentially one adjoint or one grade ad
joint operation, whereas in Case (B), (b) there are 
essentially two adjoint and two grade adjoint operations. 
We shall come back to this result in Sec. 5. 

4. CONSTRUCTION OF ADJOINT AND GRADE 
ADJOINT OPERATIONS IN THE CLASSICAL SIMPLE 
GRADED LIE ALGEBRAS 

In view of the results derived in Sec. 3 we are now 
ready to construct all possible adjoint and grade ad-
j oint operations in the classical simple graded Lie al
gebras (with the exception of the two algebras spl(2, 2)/ 
Z2 and, partly, r(O"l' 0"2' 0"3)' which, however, can be 
treated separately). 8 

In fact, given any adjoint operation in the Lie algebra 
Lo (or, equivalently, the corresponding real form L~ of 
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Lo) we have to decide ~hether the adjoint representation 
of Lo in Ll is self-conjugate with respect to L~ or not. 
Hence all that we need is the following information: 

(1) Which are the real forms of the (complex) semi
simple Lie algebras? 

(2) Given an irreducible representation of such a real 
form, determine the complex conjugate of the 
representation. 

(3) Suppose that an irreducible representation of a 
real form is self-conjugate; is the representation real 
or quaternionic? 

The answers to all these questions are well known and 
are contained in the tables of Ref. 7. 

Furthermore, the following additional remark is need
ed if Lo has a (necessarily one-dimensional) center, 
i. eo, if L is one of the algebras spl(n, m) with n '* m or 
osp(2p, 2). Recall that in this case L1 decomposes into 
two irreducible subspaces 

(4.1) 

and that there exists a unique element E in the center of 
Lo such that 

(E, U1) = U1 if U1 E: Li, 
(4.2) 

(E, U2) = - U2 if U2 E: L~. 

Evidently the adjoint operation in Lo maps the center 
of Lo into itself, i. e., E+ must be proportional to E. 
As a consequence of Eq. (3.2) it is then easy to see that 
either E+ == E and we are in Case (B), (b) or else E+ == - E 

and we are in Case (B), (a). 

Assuming that the real form L~ is compact we can 
say even more. In fact, for the algebras spl(n, m) with 
n'*m and max(n,m)" 3 the representations of sl(n) 
XsI(m) in L~ and L~ are not self-conjugate (but one is 
the complex conjugate of the other); hence an adjoint or 
grade adjoint operation on L (extending that on Lo) exists 
only if we are in Case (B), (b) and if E+ = E. On the 
other hand, for the algebras osp(2p,2) and for spl(2,1) 
[which is isomorphic to osp(2, 2) 1 both definitions E+ = E 
and E+ = - E are possible. 

We shall not pursue the problem of constructing aU 
adjoint (grade adjoint) operations in full generality but 
restrict our attention to some interesting cases. In the 
following we shall assume that Ihe real form Lt is 
compact. Note that in all other cases it is impossible 
to find star or grade star representations of L in a 
finite-dimensional Hilbert space. 

Now it is easy to prove the following lemma. 

Lemma 4.1: Let Lo be a complex semisimple Lie al
f{ebra and let L~ be a compact real form of Lo. A finite
dimensional irreducible representation of Lo is self
conjuf{ate with respect to L~ if and onl}' if it is self
contraf{rediell/. More precisely: The irreducible rep
resen/ation is real (resp, quaternionic) if and only if 
it is orthof{onal (resp. symplectic). 

Using this lemma as well as the results of Ref. 2, the 
case where the odd subspace L, is irreducible [Case 
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(A)] can be settled immediately. For the orthosymplec
ticalgebrasosp(2p,m), p,m>1, m*2, as well as for 
the two exceptional graded Lie algebras whose Lie al
gebras are respectively sl(2) xG2 and s1(2) xo(7) there 
are two grade adjoint operations. On the other hand, for 
the (J, d) algebras d(n)/ zn' n> 3, there exist two adjoint 
operations. Finally, it is easy to see that for the al
gebras b(n), n > 3, there exist no adjoint and no grade 
adjoint operations. 

Next we have to consider the case where the odd 
subspace Ll decomposes into two irreducible subs paces 
[Case (B) J. Contrary to the abstract argument given 
above we shall now use a different approach and con
struct the adjoint or grade adjoint operations explicitly 
in matrix notation [thiS method applies equally well in 
Case (A)]. 

Let uS first consider the general Linear graded Lie 
algebra pl(n, m), n, m > 1. RecaU2 that the elements of 
pl(n, m) are the (n + m)x (n + m) matrices, written in 
block form 

x=(~ ~), (4.3) 

with A an arbitrary n x n matrix, B an arbitrary n x m 
matrix, C an arbitrary m x n matrix, and D an arbitrary 
m xm matrix. 

The Lie algebra La of pl(n, m) consists of the "diag_ 
onal" block matrices ~ ~), and the odd subspace Ll 
consists of the "off-diagonal" block matrices (;';~). The 
adjoint operation in Lo will be choosen to be the normal 
Hermitian conj ugation of a matrix, i. e. , 

(
A 0)+ =(A+ 0) 
aD a D+' 

Let d be any nonzero real number. Then 

(0 B) ( 0 dC+) 
a C 0 = alB+ a (4.5) 

defines an adjoint operation in pl(n, m), whereas 

a(~ ~)= Crl~+ -~C+) (4.6) 

defines a grade adjoint operation in pl(n,m). (Here again 
the plus sign on the right-hand side denotes the normal 
Hermitian conjugation of a matrix.) 

Note that corresponding to the two possible signs of 
d the Eqs. (4.4) and (4.5) [resp. (4.4) and (4.6)] yield 
two one-parameter families of adjoint (resp. grade 
adjoint) operations. 9 In particular, choOSing d=1 in Eq. 
(4.5) we obtain the normal Hermitian conjugation in 
pl(n, m). On the other hand, the choice d = ± 1 in (4.6) 
leads to the grade adjoint as defined in Sec. 2; more 
precisely, if d=1 (resp. d=-l), then the first n rows 
and columns (resp. the last m rows and columns) be
long to the even subspace. 

Let uS now discuss the special linear graded Lie al
gebra spl(n, m) which is the subalgebra of pl(n, m) de
fined by the equation 

Tr(A) = Tr(D). (4.7) 

By restriction the mappings given in (4.4) and (4.5) 
[resp. (4.4) and (4.6)J define adjoint (resp. grade ad-
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joint) operations in the algebra spl(n,m) [and, if n=m, 
by going to the quotient, also in the algebra sp1(n, n)/ zn; 
recall that zn consists of the scalar multiples of the 
2n x 2n unit matrix]. 

Suppose now that n = 2p is even and recall that the 
orthosymplectic graded Lie algebra is the subalgebra 
of pl(2p, m) defined by the equations 

tAG+GA=O, tD+D=O, C=tBG, (4.8) 

where G is the 2p x 2p matrix 

G=( 0 /p) 
-Ip 0 

(4.9) 

and Ip is the p x p unit matrix. 

Then the adjoint operations (4.4), (4.5) do not map 
the algebra osp(2p,m) into itself. On the other hand, the 
grade adjoint operation (4.4), (4.6) maps the algebra 
osp(2p,m) into itself if and only if d=±l, thus defining a 
a grade adj oint operation in osp(2p, m) 0 

The cases m '" 2 require special attention since in these 
cases the odd space L, decomposes into two irreducible 
subs paces . One can show that with the definition (4.4) 
we are in Case (B), (b) described in Sec. 3; there exist 
two one-parameter families of adjoint operations and 
two one-parameter families of grade adjoint operations9 

in osp(2p, 2) which satisfy (4.4). On the other hand, for 
the algebra osp(2p, 2) we could equally well define the 
adjoint operation on the Lie algebra by 

(
A O)_(A+ 0) 
o D 0 -D+ 

(4.10) 

(recall that £+ = ± E). With this definition we are in 
Case (B), (a) and obtain a one-parameter family of grade 
adjoint operations 0 

Finally, let n = m C? 3 and consider the subalgebra 
d(n) of pl(n,n) defined by the conditions 

A=1J, B=C, Tr(B)=O. (4.11) 

Note that d(n)/zn is the (j, d) algebra. Evidently the ad
joint operation (4.4), (4.5) maps the algebra den) 
into its elf if and only if d = ± 1, thus defining an adj oint 
operation of d (n) and, by gOing to the quotient, of the 
(j, d) algebra. On the other hand, the grade adjoint op
erations (4.4), (4.6) do not map d(n) into itself. 

5. STAR AND GRADE STAR REPRESENTATIONS 
WHEN L 1 IS DECOMPOSABLE 

As we have seen in Secs. 3 and 4, when the odd sub
space L, decomposes into two irreducible subspaces 

(5.1) 

there is a free parameter in the adjoint, resp. grade 
adjoint, operations (apart from the freedom in choosing 
the sign of the mapping a). Let us assume that we fix 
the parameter and, therefore, a certain mapping a. In 
this way we define a class of star, resp. grade star, 
representations. For another choice of the parameter 
(mapping a ') we get another class of representations. 
It turns out that there is a natural transformation [see 
Eq. (5.2) J which associates with every representation 
of the first class a certain representation of the second 
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class but it is not obvious that all the representations 
belonging to one class are equivalent to those belonging 
to the other. We have not studied the problem in full 
detail but we have shown that for the spl(n, m), n * m, 
and osp(2p, 2) algebras the original and the transformed 
representation are indeed equivalent. 

In the following discussion we use the notation of Sec. 
3. To begin with, we recall that two adjoint, resp. 
grade adjoint, operations which belong to different 
values of the free parameter are connected by an auto
morphism if! of the algebra L [see Eqs. (3.32)-(3.34)]. 
Suppose now that p is a star, resp. grade star, rep
resentation of L with respect to the adjoint, resp. grade 
adjoint, operation given by the mapping a and which 
acts in a vector space V equipped with a nondegenerate 
Hermitian form ( I ). Then it is obvious that 

p' =po ~)-1 (5.2) 

is a star, resp. grade star, representation of L with 
respect to the adjoint, resp. grade adjoint, operation 
given by a'. In this sense we are allowed to restrict 
our attention to a special adjoint, resp. grade adjoint, 
operation out of the one-parameter family. 

It will be useful to look at this result from a different 
viewpoint. We note that it is not obvious a priori whether 
the representations p and p' are equivalent. Neverthe
less, there is a class of algebras for which this is easy 
to prove. In fact, assume that L is one of the claSSical 
simple graded Lie algebras for which La has a (neces~ 
sarily one-dimensional) center, i. e. , one of the al
gebras spl(n,m) with n*m or osp(2p,2). Then LI is 
automatically decomposable and there exists a unique 
element E in the center of La such that 

(E, VI) = VI if VI E L;, 
(5.3) 

(E, V2) = - V2 if V2 ELi. 
Recalling that adE is the linear operator in L defined 

by 

(adE)(A)=(E,A) for all AEL (5.4) 

we See that adE is the generator of the (complex) one
parameter group of automorphisms 0. Stated different
ly, if (with the notation of Sec. 3) 

g=exp(h), 

then 

It = exp(hadE). (5.6) 

Defining the linear operator 

H = exp(hp(E» (5.7) 

in the representation space V, we conclude that 

p' (A) = H-Ip(A)H , (5.8) 

for all A E L. Therefore, p and p' are equivalent. 

On the other hand, defining a new Hermitian form 
( I )' on V by 

(xjy)'=(H- I xjW1y), (5.9) 

for all x, Y E V, it is easy to check that p is a star, resp. 
grade star representation of L with respect to the ad-
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joint, resp. grade adjoint, operation given by the map
ping a' and with respect to the new Hermitian form 
( I )' • 

The results of this section indicate that for the study 
of star and grade star representations it should "normal
ly" be sufficient to fix the free parameter in the adjoint, 
resp. grade adjoint, operations arbitrarily. 

6. CLASSES OF STAR AND GRADE STAR 
REPRESENTATIONS 

As was shown in Sees. 3 and 4, in a classical simple 
graded Lie algebra L = La fB L I there exist in general 
various adjoint and/or grade adjoint operations which 
all belong to the same adjoint operation in the Lie al
gebra La. To everyone of these adjoint (grade adjoint) 
operations belongs a class of star (grade star) repre
sentations of the algebra L. 

At this place we have to include a trivial remark on 
grade star representations. Let V = Va fB VI be a graded 
vector space as in Sec. 2, i.e., equipped with a non
degenerate Hermitian form (i > such that (Va I VI) ={o}. 
We convert V into a new graded vector space V' by 
demanding that V~ = VI and V; = Va should be the even, 
resp. odd, subspace of V'. 

Suppose now that we are given a grade adjoint opera
tion in L, described by a mapping a: LI - L I , and let 
p be a grade star representation of L in V with respect 
to a. Then it is obvious that p is also a grade star rep
resentation of L in V' with respect to the grade adjoint 
operation in L described by the mapping - a. 

It depends on the circumstances whether the redefini
tion of the grading of V is adequate or not. If this re
definition is convenient, then our remark implies that 
the classes of grade star representations which belong 
to a, resp. - a, coincide. In the present work we 
distinguish between these two classes of representations. 

In the following we shall always assume that the ad
joint operation on La defines a compact real form L~ of 
La and, furthermore, that the star and grade star rep
resentations act in a graded Hilbert space. 

For each class of star representations the tensor 
product of two representations belonging to the class is 
completely reducible into irreducible representations 
belonging to the same class. This statement is generally 
not valid for classes of grade star representations. As 
is shown in Ref. 6 for example, the osp(2, 1) algebra 
admits two classes of grade star representations for 
which the tensor product is always completely reducible 
but the spl(2, 1) algebra has grade star representations 
such that the tensor product is not completely reducible. 

Using the results of Secs. 3 -5 we can summarize the 
situation as follows: 

(a) The spl(n,m), n>m;:,1, n*2, algebras have two 
classes of star representations and two classes of grade 
star representations. 

(b) For the spl(n,n)/zn' 11? 3, algebras we have con
structed two one-parameter families of adjoint opera
tions and two one-parameter families of grade adjoint 
operations. To all these operations there may cor-
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respond a class of star, resp. grade star, representa
tions. Since Sec. 5 does not apply in this case we do 
not know whether the free parameters are really relevant 
or not. 

(c) The osp(2p,m), p,m ;;.1, m *2, algebras have two 
classes of grade star representations. In the case of 
the osp(2p, 2), p .. 1, algebras we have two distinct 
possibilities depending on the definition of the adjoint 
operation in the Lie algebra (see Sec. 4). For the choice 
(4.4) one has two classes of star representations and 
two classes of grade star representations, for the other 
choice (4.10) one has one class of grade star repre
sentations. [Recall that spl(2, 1) is isomorphic to 
osp(2,2).] 

(d) The b(n), n;;. 3, algebras have neither star nor 
grade star representations. 

(e) The d(n)/ zn' n .. 3, algebras have two classes of 
star representations. 

(f) The exceptional simple graded Lie algebras whose 
underlying Lie algebras are s1(2) x G2 and s1(2) x 0(7), 
respectively, have two classes of grade star 
representations. 
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We have left out from our study the spl(2,2)/z2 and 
the r(u1 ,u2,u3 ) algebras (see Sec. 3 for the reasons). 
Let us stress that our conditions for the existence of the 
various classes of representations are only necessary. 
It may turn out that some of them are actually empty or 
that two different classes contain equivalent 
representations. 

IY.G. Kac, Funct. Anal. Appl. 9, No.3, 91 (1975). 
2M. Scheunert, W. Nahm, and Y. Rittenberg, J. Math. Phys. 
17, 1626, 1640 (1976). 

3W. Nallm, Y. Rittenberg, and M. Scheunert, Phys. Lett. 
B 61, 383 (1976). 

4p.G.O. Freund and 1. Kaplansky, J. Math. Phys. 17, 228 
(1976) . 

5G. Hochschild, III, J. Math. 20, 107 (1976); D. Z. 
Djokovic and G. Hochschild, III, J. Math. 20, 134 (1976); 
D. Z. Djokovic, J. Pure Appl. Alg. 7, 217 (1976). 

6M. Scheunert, W. Nahm, and Y. Rittenberg, J. Math. Phys. 
18, 155 (1977). 

lJ. Tits, "Tabellen zu den einfachen Liegruppen und ihren 
Darstellungen," Lecture Notes in Mathematics 40, (Springer, 
Berlin, 1967). 

8Note the relevance of our results for the construction of real 
forms of the classical simple graded Lie algebras. 

9See the discussion at the end of Sec. 3. 

Scheunert, Nahm, and Rittenberg 154 



                                                                                                                                    

Irreducible representations of the osp(2,1) and spl(2,1) 
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We illustrate through the examples of the osp(2,1) and spl(2,1) algebras the differences between the 
properties of the irreducible representations of simple graded Lie algebras and simple Lie algebras. 

1. INTRODUCTION 

In this paper we present a detailed study of the finite
dimensional irreducible representations of the osp(2, 1) 
and spl(2, 1) graded Lie algebras. These algebras are 
strictly simple: They are simple and have a nondegen
erate Killing form. 1 We have choosen to study these 
algebras because they have a small number of genera
tors and because the underlying Lie algebras are sl(2) 
(call it isospin), respectively s1(2) xgl(l) (call it isospin 
and baryon number), which have many physical applica
tions and are well known. These examples will also 
illustrate the importance of star and grade star repre
sentations defined in the preceding paper. 2 As will be 
shown, the properties of the irreducible representations 
are quite different from those of ordinary simple Lie 
algebras. 

The Casimir operators are defined as in the case of 
ordinary semisimple Lie algebras. Let Xli be the 
generators of our graded Lie algebra, given in some 
matrix representation. If the commutation relations are 

(X",X) =C~vX"" 

where 

(Xu , Xv) =XuXv _(_l)m"xvX", 

(1. 1) 

(1.2) 

and where m, n E {a, I} is the degree of X"' resp. Xv, 
then one can define a trace metric form 3 

(1. 3) 

(y is a diagonal matrix with eigenvalues + 1, resp. - 1, 
in the even, resp. odd, subspace). 

The metric form is nondegenerate in our examples. 
It is easy to show4

-
6 that 

where 

/{UIU2"' On = Tr(yXo1 Xo2 '" Xo), XO =!lJTXT 

are Casimir operators, i. e., 

[Kn' Xu 1 = 0. 

(1.4) 

(1.5) 

(1.6) 

In the examples we study, the number of independent 
Casimir operators is the same as that of the underlying 
Lie algebra: One in the case of osp(2, 1) and two in the 
case of spl(2, 1). 

The osp(2, 1) algebra was studied in some detail in 
Ref. 5 where it was shown that the Casimir operator 
uniquely determines the irreducible representations and 
that we have complete reducibility. We shall show that 
the irredUCible representations are equivalent to grade 

star representations. This observation has an interest
ing application when one computes the Kronecker prod
uct of two irreducible representations, If the state vec
tors for each representation separately form a Hilbert 
space, when one decomposes their product into irreduc
ible representations, the state vectors of the various 
irreducible subrepresentations are not orthogonal. One 
can, however, define a bilinear form which is invariant 
with respect to the product of the given representations, 
and the state vectors are orthogonal with respect to this 
form. In this way we give explicit expressions for the 
Clebsch -Gordan coefficients which are fixed up to an 
overall sign for each irreducible sub representation. 

We next study the irreducible representations of the 
spl(2, 1) algebra. It turns out that the eigenvalues of the 
two Casimir operators do not always specify the irre
ducible representations. This happens when the eigen
values of the Casimir operators are both zero. In this 
case an interesting relation between the "isospin"' and 
the "baryon number" content of the irreducible repre
sentation appears. 

In the case of the spl(2, 1) algebra we do not have 
complete reducibility, as it shown by examples. We 
show, however, that One can define two classes of star 
representaUons2 and inside each class one has indeed 
complete reducibility. The Clebsch -Gordan series for 
each class are also given. 

We think that the examples presented give an insight 
into the basic differences between the properties of the 
irreducible representations of Simple Lie algebras and 
Simple graded Lie algebras. 

2. IRREDUCIBLE REPRESENTATIONS OF THE 
osp(2, 1) ALGEBRA 

Let us first recall that all finite-dimensional repre
sentations of osp(2, 1) are completely reducible5

,7 and 
that the irreducible representations of osp(2, 1) have 
been constructed in Ref. 5. In this section we shall give 
a more detailed discussion of these representations. 

A. Definition of the irreducible representations 

The even part of the osp(2, 1) algebra is sl(2). We 
denote by Qm, m = 1,2.3 the usual generators of s1(2) 
and call them isospin. The odd generators V. are sl(2) 
spinors. Defining as usual Q.=Q, ±iQ2. the commuta
tion relations of our algebra read as follows: 

(2.1) 

(2.2) 
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(2.3) 

The irreducible representations of this algebra are 
characterized by a quantum number q which takes the 
values q = 0, ~, 1, %, .. '. The eigenvalues of the 
Casimir operator 

K2 = QmQm + V+ V_ - V_ V+ 

are q(q +~). 

(2.4) 

The representation corresponding to q :::: 0 is the 
trivial one -dimensional representation. Suppose now 
that q ~ ~. Then the q representation contains two iso
spin multiplets which belong to isospin q, resp. q - ~, 
and which are denoted by I q, q, q.), respo I q, q - L q.); 
the first quantum number characterizes the representa
tion and the second and third quantum numbers give the 
isospin and its three component. With a convenient 
normalization of the state vectors the q representation 
is defined as follows 

Q31 q, q, q3) =q3Iq, q,q.), 

Q .1 q , q, q 3 ) = .J (q ~ q 3) (q ± q 3 + 1 ) 1 q , q, q 3 ± 1> , 

Q.I q, q - L q3) == ,r (q - 1/2 ~ q 3)(q + 1/2 ± q3) 

X\q,q-Lq3±1), 

V. \ q, q, q3 > == ~ ~,r q ~q3\ q, q - L q3 ± ~>, 

v.iq ,q -Lq3> == -~,rq +1/2 ±q3iq,q,q3±~)' 

(2.5) 

To simplify the notation we use the same symbol for an 
element of our algebra and for the linear operator 
representing it. 

In the following it will be necessary to know which 
subspace of the representation space is defined to be 
even or odd. In the present case one of the isospin mul
tiplets generates the even subspace and the other gen
erates the odd subspace; however, it is completely up 
to our choice which of these multiplets is considered to 
be even, resp. odd. If the iQ,q,q3> multiplet has degree 
A EO {O, n, then the 1 q, q - L q3 > multiplet has degree 
A + 1 and the states will be denoted by 

(2.6) 

[Recall that an even (resp. odd) vector is said to have 
degree ° (resp. 1) and that degrees are added and multi
plied modulo 2. 1 

B. Grade star representations 

We shall now discuss whether the q representation of 
osp(2, 1) may be considered as a star or grade star 
representation as explained in Ref. 2. Since we shall 
require that the generators Q", are represented by 
Hermitian operators the adjoint operation in s1(2) should 
satisfy 

(2.7) 

As shown in Ref. 2 there is nO (normal) adjOint opera
tion in osp(2, 1) which is consistent with (2.7). However, 
(2.7) may be extended to a grade adjoint operation of 
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osp(2, 1) in just two different ways, namely8 

VJ==~V_, V!==±V+. (2.8) 

Suppose now that q ?- ~ and that the 1 q, q, q.) multiplet 
has degree A. Let us assume that the q representation 
is a grade star representation with respect to a non
degenerate Hermitian form (denoted by a bracket ( I ». 
Then (2.7) implies that the two isospin multiplets are 
orthogonal and that the restriction of < I ) to an isospin 
multiplet is proportional to the well-known positive 
definite scalar product. The latter statement means 
that there exist real nonzero constants g,h such that 

(q ,q, q3' .\.(q, q, q~,.\.) = J{00303' 

(2.9) 

It follows that the conditions (2.8) are fulfilled if and 
only if 

(2.10) 

We conclude that every q representation is a grade star 
representation with respect to a suitable positive 
definite scalar product on the representation space pro
vided that the sign in (2.8) and the degree of the isospin 
multiplets have been choosen such that 

(2,11) 

If this condition is fulfilled, then our state vectors are 
orthogonal and of equal length with respect to the 
appropriate scalar product. 

C. Tensor products of irreducible representations 

In this subsection we shall give the Clebsch-Gordan 
coefficients for the tensor product of two irreducible 
representations of osp(2, 1). To begin with we recall 
that an odd generator Vacts on the product of an even/ 
odd state If) of the first representation with an arbi
trary state 'J?! of the second representation like 

(2.12) 

Hence we have to specify once again which subspace of 
our irreducible representation is even and which is odd. 

We shall consider the tensor product of a q represen
tation with a q' representation. From Ref. 5 we know 
that this tensor product decomposes into the direct sum 
of the p representations with 

p E {q +q',q +q' - L q +q' -1, ... , iq -q'i}, (2.13) 

Using the well-known recoupling techniques for product 
representations of sl(2) it is straightforward to compute 
the Clebsch -Gordan coefficients. 

To formulate our results we shall first introduce 
some notations. Let us consider the two isospin multi
plets Iq,q - L q3' '\ +1) and Iq', q' -L q~, A' +1). The 
usual coupling of these multiplets to a state with iso
spin q" and three component q~' will be denoted by 

I ' " 1 " ", +, ') q,q;q-2,q-C.;q,f/"" " 

== (q - L q' - L f/3' q; \ q", q~) I q, q - L Q3' A + 1) 

® iq', q' -L q;, A' +1), (2.14) 

where (q -L q'-L q3, q;\q", q;) is a Clebsch-Gordan 
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coefficient of s1(2). The other possibilities are treated 
similarly: The first and second quantum numbers give 
the representations of osp(2, 1), whose tensor product 
is considered, the third and fourth quantum numbers 
denote the isospin of the two isospin multiplets which 
are coupled to a state with isospin q" and three com
ponent q;, finally in the last place we give the degree 
of the product state (in our example this degree is equal 
to 11.+1 +11.' +1 =>.. +>..' mod 2). 

Furthermore, we denote the states of the p subrepre
sentation of our tensor product by Iq, q';p, p', P;, JJ.). 
The first and second quantum numbers indicate the 
representations whose tensor product is considered; the 
remaining four quantum numbers specify the state: It 
belongs to the p subrepresentation, its isospin and three 
component are respectively P' and P;, and its degree is 
equal to IJ.. 

The osp(2, 1) Clebsch-Gordan coefficients are then 
given by the following formulas. 

Suppose first that 

p E {q + q " q + q' - 1, ... , 1 q - q , 1 }. (2.15a) 

Then 

Iq, q';p, p, P3' A +>..') 

= ~ {v' p +q +q' +1lq, q';q, q'; p, P3, >.. +>..~ 
2p + 

-(-1)~y'q +q'-plq, q';q-L q'-t;P,P3' >"+>"')}, 

(2.15b) 

/q,q';p,p-t,P3,>"+>"'+1) 

=(-1)~ ~{JP+q'-qlq,q';q,q'-t;p-L 

P3, >.. +>..' +1) +(-1».y'p +q -q' 

x/q, q'; q-L q';p-L P3, A+>..'+1)}. (2.15c) 

Of course, if q =q' and p =0, Eq. (2.15c) has to be 
omitted. 

On the other hand, if 

PE{q+q'-L q+q'-t, ... , Iq-q'I+t}, (2.16a) 

then 

Iq,q';p, p, P3' >..+>..'+1) 

= ~{Jp+q-q'+1/2Iq, q'; q, q'-t; 
2p + 

p, P3' >..+>..'+1)-(-I».v'p+q'-q+lj2 

xlq, q'; q-L q';p, P3, >..+>..'+1)}, (2.16b) 

Iq,q';p, p-L P3, >"+A') 

=-(-1». ~ {Vq +q'-p +1/2Iq, q'; q, q'; 
v2P 

p-L P3, A+,\')-(-l)'y'P+q+q'+1j2 

X /q, q'; q -L q' -t; P -L P3' A H.')}. 

In the next subsection we shall comment on the 
normalization of the states Iq, q'; P, p', P;, JJ.). 
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(2.16c) 

D. Invariant bilinear forms for the q representations 

From Eqs. (2.15) we conclude that the tensor product 
of a q representation with itself contains the trivial one
dimensional representation. Hence it is evident that 
every q representation admits an even (with respect to 
the grading) invariant nondegenerate bilinear form. 3 It 
is easy to construct this form directly; let us denote it 
by ( 1 ). From sl(2)-invariance we derive that the two 
isospin multiplets are orthogonal with respect to ( I ) and 
that 

( 1 1/ 1, >..+1)=b(_1)Q-l/2-Q31) , q,q-2,Q3'>"+ q,Q-2,q3' 03,-03' 

(2.17) 

with some nonzero constants a, b. It turns out that this 
form is osp{2, 1) -invariant if and only if 

(2.18) 

In the follOwing we shall choose 

a=1, b=(-l)~. (2.19) 

We shall now make use of the following general 
remark. 

Suppose we are given any graded Lie algebra Land 
two graded representations of L in some graded vector 
spaces VI and V2 • Assume, furthermore, that there 
exists an L -invariant bilinear form ¢ j on Vi' i = 1,2. 
We define a bilinear form 1> on VI «) V2 by 

¢(X1 «)X2, y I 0Y2)=(-1){2"1¢I(XU YI)¢2{X2'Y2) 

(2.20) 

if xl> Yl E VI and X 2 , Y2 E V2 are homogeneous (i. e., even 
or odd) elements of degrees, respectively, ~H Th, ~2' 
712' Then it is easy to check that this "product form" 1> 
is invariant with respect to the tensor product of the 
given representations. 

Let us apply this remark to the tensor products stud
ied in subsection C. As expected, the p subrepresenta
tions are orthogonal with respect to the product form. 

Furthermore, the product form induces on every p 
subrepresentation the bilinear form defined by Eqs. 
(2.17) and (2.19) apart, possibly, from a sign. By this 
latter property our Clebsch-Gordan coefficients are 
fixed up to an overall sign for each P subrepresentation 
(provided we demand that they should be real). 

3. IRREDUCIBLE REPRESENTATIONS OF THE 
spJ(2, 1) ALGEBRA 

A. Construction of the irreducible representations 

The even part of sp1(2 , 1) is s1(2) x gl(1). We denote 
by Q"" m = 1, 2, 3 the usual generators of s1(2) (call it 
isospin) and by B the generator of g1(1) (call it baryon 
number). 

The odd generators V., resp. W., carry baryon num
ber + L resp. - L and are s1(2) spinors. 

If we define 

(3.1) 
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the commutation relations of our algebra read as 
follows: 

[Qrn, Qnj=i€"mpQp, [Qm,Bj=O, 

[Qrn, U"J=~r~UB' [B, U",j=~€B"UB' (3.2) 

{U"" UB}=(CTm)"BQm -(C€)"'BB, 

where the 4 x 4 matrices Tm
, C, f are defined by 

T m are the usual Pauli matrices and C = ir is the charge 
conjugation matrix 

T1=(0 1), r=(O -i), T 3 =(1 0), c=( ° 1). 

1 ° tOO -1 -1 ° 
(3.4) 

One can show that the algebra spl(2, 1) has just two 
Casimir operators K2 and K 3 , 

where (3.5) 

i=2,3, m=I,2,3, QI=1,2,3,4, 

and their expression is [see (1.4) j 

K2=Q2 _B2 +~UCU, 

K3=BK2 +~BUCU +iUQ€iCU + fz uficUQ. 
(3.6) 

In the following we shall classify the states of a rep
resentation according to their isospin and baryon num
ber. Therefore, we shall first rewrite the commutation 
relations (3,2) appropriately. Introducing as usual 

Q. = Q1 ±iQ2 

we obtain 

[Q3' Q.J= ±Q., [Q" Q-1=2Q3' 

[B,Q.j=[B,Q31=O, 

[B, v.l=~V., [B, w.l=-~W., 

[Q3' V.j=±~V., [Q3' W.j=±~W., 

[QH v.l= V., [Q., W.l= w., 

[Q., V.] = [Q., w.] = 0, 

{V., V.} = {V., V.} = 0, 

{W., wJ={w., w.}=O, 

{v~, W.}=±Q., 

{V., W.}= - Q 3 ±B. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

From the commutation relations it is evident that the 
substitution 

(3.11) 

defines an automorphism of our algebra. 

Let us now construct all finite -dimensional irreduc
ible representations of spl(2, 1). 

Suppose we are given any irredUCible representation 
of our algebra, acting in some vector space V. For 
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simplicity we denote an element of our algebra and its 
representative (which is a linear operator in V) by the 
same symbol. As is well known we can decompose V 
according to isospin; let q be the maximal isospin con
tained in V and define 

(3.12) 

Evidently B maps V' into itself, hence V' contains an 
eigenvector CPo of B; let us denote the corresponding 
eigenvalue by b. Then 

Q2rfJo=q(q +1)cpo, Q3CPO=qrfJO' BrfJo=bcpo' (3.13) 

Note that q = 0, ~,1, ... , but that I> may be any complex 
number. 

Since our representation is supposed to be irreduc
ible, the vector CPo must be cyclic, i. e., applying 
arbitrary polynomials in the generators to CPo we must 
generate the whole space V 

According to the choice of q we have 

V,CPo = w,CPo = Q .<bo = 0, (3.14) 

furthermore, the commutation relations (3,10) yield 

(3.15) 

Using the commutation relations once again it is now 
easy to see that the vectors 

Q",<bo, Q",v_<po, Q",W_dJo, Q",W_ VAo, 

with integers m >- ° 
generate the representation space V. 

As a consequence of (3.14) one can prove that 

Q y_ WAo = - (q - 1»0o, Q. W. V_0o = - (q + b)cpo, 

whereas 

Q.Q-'/>0=2qcf;>o· 

(3,16) 

(3, 17) 

It is now obvious that our representation contains 
a multiplet with isospin q and baryon number 1>, at most 
one multiplet with isospin q - ~ and baryon number 
b + t at most one multiplet with isospin q - ~ and bary
on number b -~, and at most one multiplet with isospin 
q -1 and baryon number b. The states which belong to 
these quantum numbers as well as to the eigenvalue q3 
of Q3 will be denoted by 

ib,q,q3)' ib+L q-L q3)' 

Ib-t, q-L q3)' Ib, q-l, Q3)' 

respectively. 

(3, 18) 

One can now use the commutation relations (3.8)
(3.10) to construct the representation explicitly. To 
facilitate the discussion we shall employ the Wigner
Eckart theorem for sl(2). To do this we assume that our 
states are normalized according to the usual conven-
tions, e. g., 

Q3 1 b,q,q3) =q31 b,q, q3)' 

Q.I b, q, q3) = -.j (q Of q3)(q ± q3 + 1) 1 b, q, q3 ± 1). 
(3. 19) 

Then the Wigner-Eckart theorem yields 
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V.ib,q,Q3)=±av'q'fqaib+L q-L q3±t), 

W.ib,q,q3)=±{3v'q'Fqaib-t, q-L q3±t), 

V.lb+Lq-Lq3)=0, (3.20) 

W.lb+L q-L q3)=yv'q±q3+1j2ib,q,q3±t) 

±ov'q'Fqa- 1/ 2 ib, q-I, qa±~), 

V.ib-t, q-L q3)=Evq±q3+1/ 2 ib,q,q3±t) 

:t U q 'F q 3 - 1/2 i b, q - I, q 3 :t ~ ) , 

W,ib-L q-t, q3)=O, 

V.ib, q -1, Qa)=7vq:tQal b +L q -t, q3±t), 

W.ib, q -I, q3)=WVq±q3ib -t, q -L qa±~), 
where a, {3, ... ,7, ware some numbers which are in
dependent of q3 but which may depend on band q. 

The commutation relations (3.8) and (3.9) are then 
satisfied. Let us now first consider some degenerate 
cases. 

(a) Suppose that 

VA>o=W_<po=O. (3.21) 

Then QA)o=O and, therefore, q=O. Conversely, if 
q =0, then our representation is the trivial one-dimen
sional representation of spl(2, I). 

In the following we may assume, therefore, that q if- 0. 

(b) Suppose that 

V_<Po*O, W_<Po=O. (3.22) 

Then our representation contains the multiplets ib,q,qa> 
and I b +Lq -Lq3) but not the multiplets I b -Lq -Lq3) 
and I b, q - 1, q3)' With the appropriate definitions 

ib-Lq-Lqa>= ib,q-l,qa>=O, 

{3=0=E=!;=7=W=O 
(3.23) 

it is easy to see that (3.20) defines a representation of 
sp1(2, 1) if and only if 

ay= 1, b =q. (3.24) 

The equation b =q may also be read off from (3.17). 
Note that the remaining free parameter (choose for 
example a) reflects the fact that the relative normaliza
tion of the two isospin multiplets is not fixed. Represen
tations with different choices of a are equivalent, 

This representation will be called the (q,q) repre
sentation; it is readily shown to be irreducible of dimen
sion 4q + 1. However, we would like to stress that both 
Casimir operators K2 and K3 are zero in this represen
tation. Thus the eigenvalues of the Casimir operators 
do not specify the irreducible rep res entations. 

(c) Suppose similarly that 

(3.25 ) 

Then our representation contains the multiplets I b, q, qa> 
and Ib-Lq-Lq3) but not the multiplets Ib+Lq-Lqa> 
and I b, q -1, q3)' With the appropriate definitions 

Ib +Lq-t,q3)= Ib,q-l,qa>=O, 

a=Y=O=~=7=W=O, 
(3.26) 
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it is easy to see that (3.20) defines a representation of 
spl(2, 1) if and only if 

/3E=I, b=-q. (3.27) 

The equation b = -q may also be obtained from (3.17). 
Note that the remaining free parameter (choose for 
example (3) reflects the fact that the relative normaliza
tion of the two isospin multiplets is not fixed. Repre
sentations with different choices of {3 are equivalent. 

This representation will be called the (- q, q) repre
sentation; it is irreducible of dimension 4q + 1 and (once 
again) the Casimir operators K2 and K3 are zero. 

(d) Suppose now that 

(3.28) 

but that W_ V_<Po or V_ W_<Po (and, therefore, W_ V.<Po and 
V_ W_<po) are scalar multiples of Q -<Po. This latter con
di tion is fulfilled if and only if the multiplet I b, q - I, q a> 
is not contained in our representation. Using (3. 15) it 
is easy to see that this is the case if and only if q = ~ . 
With the appropriate definitions, 

Ib,q-l,q3)=0, O=!;=7=w=0, (3.29) 

we derive that (3.20) defines a representation of 
sp1(2, I) if and only if 

ay+{3E=I, ll'y-{3E=2b, (3.30) 

i. e., if and only if 

Qly=t +b, /3E=~ -b. (3.31) 

Note that in this case we have two free (nonzero) 
parameters a and {3 which are due to the freedom ih 
normalizing the three isospin multiplets independently. 
Representations with different a, {3 are equivalent. Since 
these representations fit quite well into the general case 
we postpone their discussion to that place. 

(e) We are now ready to discuss the general case in 
which our representation contains all four isospin multi
plets. As we have seen we may suppose q;, I. Then 
Eqs. (3.20) define a representation of spl(2, I) if and 
only if 

O'E +!;7=0, 

{3y+OW=O, 

ay+j3€=I, a<'i+{3!;=O, O'y+07=1, 

{3E+!;w=l, oT+!;w=l, YT+EW=O, 

ll'y+{3E=I, ay-{3E=b/q, aO +{3!; =0, 

ay+07=1, ay(q+t)-07(q-~)=b+L 

{3E+!;w=l, -{3E(q+~)+!;w(q-~)=b-L 

<'iT+!;w=l, -<'i7+!;w=b/q, y7+EW=0. 

(3.32) 

(3.33 ) 

(3.34) 

(3.35 ) 

It is easy to compute the general solution of these 
equations. In fact, choOSing three arbitrary nonzero 
constants a,{3,O, the Eqs, (3.32)-(3.35) are fulfilled if 
and only if 

£1'0 
!;=-~' 

1 q-b 
T=52q' 

lq+b lq-b 
y=-;zq' E={3zq' 

{3 q +b 
w=-ao 2q' 
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The three free parameters 01, {3, 0 reflect the fact that 
the relative normalization of our four isospin multiplets 
is not fixed. Representations with different 01, {3, 0 are 
equivalent. 

The cases q = ~ are included if we choose 0 = 0 and 
define T=w=O. The equations for 1:,y,€ in (3.36) are 
then valid [see (3.31)]0 

If b *- ±q then the representation which we have ob
tained will be called the (b,q) representation; it is 
irreducible of dimension 8q and the Casimir operators 
K2 and K3 take the values 

(3.37) 

Recall that q = ~, 1, ~, • • • and that b is an arbitrary 
complex number. 

Next we remark that our construction works in the 
cases b = ± q, too, but the nominators q 'f b appearing in 
(3.36) lead to several complications. In fact, in this 
case the representation is not irreducible, Since the 
states I b 'f%, q -~, q~ and I b, q -1, q~ span an invariant 
subspace which carries the (±(q -~),q -~) representa
tion. On the other hand, the vector 1>0 = I ± q, q, q) is 
still cyclic. It is now easy to show that there is no sub
representation which is complementary to the 
(±(q -~),q -~) subrepresentation. Hence we have ob
tained a sequence of representations of sp1(2, 1) which 
are not completely reducible. 

In the next subsection we shall show that even the 
tensor product of two irreducible representations is not 
necessarily completely reducible. 

We conclude this subsection with a remark on the 
action of the automorphism (3.11) on a representation 
given by (3.20). It is obvious that this automorphism 
maps the representation (3.20) into a similar one whose 
quantum numbers are 

b'=-b, q'=q, (3.38) 

whose isospin multiplets are 

Ib',q',q3)'= Ib,q,q~, 

I b' ±Lq' -%,q~'= I b 'fLq -Lq~, (3. 39) 

Ib',q'-l,q~'= Ib,q-l,q~, 

and which belongs to the parameters 

01 ' = (3, J3' = 01, y' = E, E' = y, 

0'=1;;, 1;;'=0, T'=W, w'=T. 
(3.40) 

B. The product of two irreducible representations is not 
necessarily completely reducible 

To prove the statement in the title we consider the 
product (0, ~) 0(0, ~). The states are denoted according 
to the follOwing table: 

state 
1. rep. 2.rep. B Q3 

b 
1 0 a "2 

~, 0 1 
TJ, 2 

~- 0 1 
TJ- -2 

a b 
1 0 -2 
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We choose 01= (:l=y=€= 1/.f2 in (3.20) and get the 
matrices representing the odd generators 

(0 0 1 

~} (' -1 0 

i). 1 0 0 0 V __ 1_ 0 0 0 
V.=.f2 ~ 0 0 --.f2 ~ 0 0 

0 0 0 0 

(3.41 ) 

(' 0 0 

~). (' 0 0 

~} 1 1 0 0 1 0 0 0 
W.= 12 ~ 0 0 W_= 12 ~ 0 0 

0 1 -1 0 

Next we recall that an odd generator U acts on the 
product of an even/Odd state If) of the first representa-
tion with an arbitrary state I g) of the second repre-
sentation like 

U(lf)0Ig»=Wlf»0Ig)± If)0Wlg». (3.42) 

To define the product of our representations we have, 
therefore, to make a choice which states in the first 
representation should be considered as even (resp. 
odd). There are two possibilities which will be treated 
simultaneously using the convention that the upper 
(resp. lower) sign is valid if we choose L, ~Jresp. a,a) 
to be even and hence a, a (resp. ~., ~J to be odd. 

Then it is easy to check that the states 
1 

~.0TJ" VZTJ_, !2 (C2:TJ_+C 0 TJ.), 

1 
f2 (a0TJ.±L0b), 

1 
!2 (a2:TJ_±C 0 1i), 

1 _ -
.f2 (a 0 11.± C 0 b), 

1 -
!2 (00 TJ _ ± ~ _ 0 Ii), 

1 -
f2 (a0b -a0b) 

(3.43) 

span an invariant subspace corresponding to the repre
sentation (0,1); the normalization parameters are 
01 = (:l = 'f 0 = 1/12. 

The remaining states are combined as follows: 

p=a0b, 

- 1 -
A.= ~ (a0TJ.'f~.0b), 

- 1 -
A_= 12(00TJ_'f~_0b), 

p=a2:b, 
(3.44) 

s = Ha 0 b'f L 0 TJ _ ± ~_ 0 TJ. + a @ b), 

It is easy to prove the following statements: 

(I) The eight vectors (3.44) span an invariant sub
space and t is a cyclic vector for the corresponding 
representation. 

(II) The states A., A_,P, s (resp. A" A_,fi, s) span an 
invariant subspace which corresponds to the representa
tion defined in Sec. 3 A (d) and whose quantum numbers 
are b=L q=~ (resp. b=-L q=~). The normalization 
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parameters are a = f3= 'f 1. Recall that this representa
tion is not completely reducible; in particular s is in
variant, i. e., it is mapped into zero by all generators 
of our algebra. 

C. Star and grade star representations 

We have seen that in general the product of two 
irreducible representations is not completely reducible. 
In order to find out if there are classes of representa
tions for which we have complete reducibility we look 
for star and grade star representations as explained in 
ReL 2. 

In the following we shall require that the generators 
Q .. and B are represented by Hermitian operators. 
Hence the adjoint operation in s1(2) xgl(l) should satisfy 

(3.45) 

In the normal adjoint case the appropriate extensions 
of this operation to spl(2, 1) are then given byB 

with 

D=±( 0 c), 
-C 0 

whereas in the grade adjoint case we have 

U!=DIlctUa 

with 

These equations are equivalent to 

v~= 'f W+' 

W:= 'f V_, 

(normal adjoint) 

V!='fW_, V!=±W., 

W!=± V., W!='f V_. 
(grade adjoint) 

We shall now answer the following question. 

(3.46a) 

(3. 46b) 

(3.47a) 

(3.47b) 

(3.46) 

(3.47) 

Suppose we are given one of the (b, q) representations 
which have been constructed in Sec. 3 A. Is it possible 
to find a nondegenerate (but for the present not neces
sarily positive definite) Hermitian scalar product (de
noted by a bracket ( I » on the representation space such 
that the representation is a star representation (resp. a 
grade star representation) with respect to one of the 
adjoint (resp. grade adjoint) operations defined in (3.46) 
[resp. (3.47)]? 

As an example we consider a ·(b,q) representation with 
b *- q, - q; q;, t, and try to convert it into a star repre
sentation; the other cases are treated similarly. 

To begin with we exploit (3,45). It is easy to see that 
these equations are fulfilled if and only if 

(1) b is real, 

(II) any two different of our isospin multiplets are 
orthogonal, 
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(III) the restriction of ( I ) to an isospin multiplet is 
proportional to the well-known positive definite scalar 
product. 

The last statement means that there exist real non
zero constants 15, g., g_, gl such that 

(b,q,q3Ib,q,q:) =gi5q3q!J' 

(b +L q -L q31 b +L q -L q~) =g+i5Q3Q3 , 

(b -L q -t, q31b -L q -L q~) =g-i5Q3Q3 , 

(b,q-1,q3Ib,q-1,q~)==gli5Q3Q3' 

(3.48) 

The conditions (3.46) are then fulfilled if and only if 

ag+==±y*g, f3g_='f€*g, 

i5g1 == 'f r* g +' ?;gl == ± w* 15_. 

(3.49) 

Because of (3.36) the solution of these equations is 

1 b +q 
g+=± j(lj2 2q"g, 

1 b-q 
15- == ± "iJ3i2 2q g, (3.50) 

1 b2 _ q2 
gl=~~g, 

with an arbitrary nonzero real number g. 

[In the cases q = t one has to drop the last equation in 
(3.48), the third and fourth equation in (3.49) and the 
last equation in (3.50). ] 

Hence our problem always has a solution (which is 
unique up to a real factor). However, we would like to 
get a positive definite scalar product, i. e., we would 
like to require that ft, 15., ft-, ftl should be (strictly) posi
ti ve. This is possible if and only if ± b > q. 

The necessity of this latter condition is easily under
stood. From (3.46) and the commutation relations we 
infer that 

(3.51) 

If our scalar product is positive definite the left-hand 
side is a positive (semidefinite) operator which implies 
± b ;,q. 

Assuming that the condition ± b > q is fulfilled it is 
natural to arrange that our state vectors are normalized, 
i. e., that 

(3.52) 

This will be the case if we choose ft = 1 and 

( b +q)I/2 
a=~2q , 

(b q _\ 1/2 

f3 = i5 = \± 2~ J . (3.53 ) 

(In the cases q = t we choose of course i5 = O. ) 

Without further comments we shall now describe our 
results concerning star and grade star representations 
of sp1(2, 1). The scalar product in the representation 
space will always be supposed to be positive definite. 

We first look for the two classes of star representa
tions S% corresponding to the two signs in (3.46). The 
S% class is composed of the (b, q) representations for 
which b is real and ± b ;, q. Choosing 
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if ±b=q, case (b) or (c), 
Sec. 3 A, 

( 
b +q)1/2 

<1= ±""2q , ( 
b_q)1/2 

{3= ±-2- ,if ±b >q=L 
q case (d), Sec. 3 A, 

( 
b +q)1/2 

<1= ±""2q , ( 
b _q)1/2 . 

(3=O== ±-2- If ±b >q"?-l, 
q case (e), Sec. 3 A, 

(3,54) 
our state vectors will be orthogonal and of the same 
length with respect to the appropriate scalar producto 

As was stressed in Ref. 2 the product of two repre
sentations belonging to the S' class is completely re
ducible into (irreducible) representations belonging to 
the S' class. 

The Clebsch-Gordan series are 
(b,q)0(b',q') 

= (b + b', I q - q' I ) EEl (b + b', I q - q' I + 1) EEl ••• 

EEl(b +b',q +q') 

EEl (b + b', I q - q' I + 1) EEl· •• EEl (b + b', q +q' - 1) 

EEl(b +b' +L Iq -q'i +~)EB'" EEl(b +b' +Lq +q' -~) 

ffi(b+b'-L Iq-q'l +~)EB"'EB(b+b'-~,q+q'-~), 

(3.55 ) 
if 

±b>q"?-~, ±b'>q'"?-L 

In the case q = q , the first term on the right-hand side 
[Le., (b +b', Iq -q'I)] has to be dropped. If q=~ or 
q , = ~ the third line on the right-hand side is empty, 

(±q,q)0(b ',q') 

= (± q + b', i q - q' i) EB (± q + b', i q - q' i + 1) EB " . 

EB(±q +b',q +q') 

EB(±q +b'±~, iq -q'i +~) EB·· ·EB(±q +b'±~,q +q' -~), 

if 
(3. 56) 

q"?- 0, ± b' > q'"?- ~. 

If q"?- q' the first term on the right-hand side [i. e. , 
(±q +b', iq -q'i)] has to be dropped, 

(±q,q)0(±q',q') 

=(±q±q',q +q')EB(±q ±q'±L Iq -q'i +~)EB'" 

EB(±q±q'±L q+q'-~), forallq,q'"?-O. (3.57) 

The Clebsch-Gordan series (3.55)-(3.57) may be 
obtained just from the isospin and baryon number con
tent of the product representations. In particular they 
are independent of which subspace in the (b,q), resp. 
(± q, q), representations has been defined to be even or 
odd. 

Note, furthermore, that the properties of the S- class 
can be read off directly from those of the S' class and 
vice versa by applying the automorphism (3.11). In fact, 
this automorphism interchanges the two possible adjoint 
operations given in (3.46). 

Let us next comment on the grade star representa
tions and try to convert a (b, q) representation with b ~ q, 
- q; q"?- ~, into a grade star representation. An argu
ment which is completely analogous to that given above 
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yields the equations [corresponding to (3.50)] 

). 1 q +b 
g.=±(-l) i'(;i2"2qg, 

( »
• 1 q - b 

g-=± -1 l7Ji2~g, 

1 b2 -l 
gl == TaW --;;qr-g, 

(3.58) 

with an arbitrary nonzero real number g. Here A E {O, I} 
is the degree of the isospin q multiplet of the first rep
resentation. The last equation in (3.58) has to be 
dropped if q = ~ . 

It is now evident that our Hermitian form can be 
choosen to be positive definite if and only if q = ~ and 
-~ <b <~. If this is the case we have to arrange, 
furthermore, that the sign in the grade adjoint operation 
(3.47) and the degree A satisfy 

(3.59) 

This result yields a counterexample which is interesting 
for the general theory of grade star representations. We 
have shown that the (0, ~) representation is a grade star 
representation with respect to a positive definite scalar 
product. On the other hand, the tensor product of the 
(0, ~) representation with itself is not completely re
ducible (see Sec. 3 B). Hence 2 there cannot exist any 
positive definite scalar product which converts (0, ~) 
0(0,~) into a grade star representation. 

The (q, q) and (- q, q) representations can be converted 
into a grade star representation provided that condition 
(3.59) is satisfied. In fact, these representations are 
then star representations and grade star representations 
with respect to the same positive definite scalar prod
uct. It is evident from (3.57) that in this case the tensor 
product of two irreducible grade star representations 
is not decomposable into irreducible grade star repre
sentations. Let us recall, furthermore, that the (q,q) 
and (- q, q) representations are those which are not 
characterized by the Casimir operators. Presumably 
all these pathologies are connected somehow. 

From the results derived above we conclude that con
sidering grade star representations of spl(2, 1) is 
almost useless. 
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Rittenberg, and M. Scheunert, Phys. Lett. B 61, 383 (1976); 
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4The proof is trivial and is based on the observation that 
Tr(y(A, B» = 0 (which is the generalization of Tr(lA, B)) = 0). 
In order to prove Eq. (1. 6) all we have to do is to bring X" 
under the trace sign. 

5A . Pais and V. Rittenberg, J. Math. Phys. 16, 2062 (1975). 
6N. Backhouse, J. Math. Phys. 18, (Feb. 1977), 
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nitions of the adjoint and grade adjoint operations. The star 
and grade star representations are defined in (2.18).2 
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Solitons, pseudopotentials, and certain Lie algebras 
James Corones 

Department of Mathematics, Iowa State University, Ames, Iowa 50011 
(Received 24 May 1976) 

It is shown that there is a common algebraic structure in the pseudopotentials of equations solvable by the 
generalized Zakharov-Shabat eigenvalue problem. It follows that an arbitrarily large number of 
prolongation variables can be associated with these equations and that a recently developed geometric 
interpretation of solitons can be given for each of these equations. 

1. INTRODUCTION 

The idea of a pseudopotential was introduced into the 
study of nonlinear partial differential equations by 
Wahlquist and Estabrook. 1 It has previously been shown 
that the simple pseudopotential2 associated with the 
Korteweg-de Vries (KdV) equation and several other 
equations that have soliton solutions define a Lie alge
bra. 2,3 For the KdV equation this observation was also 
made in ReL 4 where the algebra was identified and 
used in a geometric interpretation of solitons. 

In this note it is shown that there is a common alge
braic structure in the linear pseudopotentials (see ReL 
3 and below) associated with equations soluable by the 
inverse scattering method via the generalized Zakharov
Shabat eigenvalue problem. 5 It is shown that the 
Zakharov-Shabat eigenvalue problem corresponds to a 
2 x 2 matrix representation of this structure. Higher 
dimensional representations correspond to new eigen
value problems and associated isospectral flows. 

The results of this note show that an arbitrarily large 
number of prolongation variables, in the sense of Ref. 
1, can be associated with the equations soluable via the 
Zakharov-Shabat problem. That this might be possible 
is suggested, for KdV, in Ref. 1 in connection with a 
new infinity of conservation laws for KdV. Here the new 
prolongation variables are defined by seeking higher 
dimensional representation of the algebraic structure. 
In addition the results show that the geometric construc
tion of Ref. 4 can be applied, using the same algebraic 
structure, to all equations, treated via the generalized 
Zakharov-Shabat problem. 

2. DEFINITIONS 

In a previous paper, Ref. 2, the classical definition 
of the set of all pseudopoter.tials associated with a given 
scalar evolution equation was given. Here an (obvious) 
extension to pairs of coupled equations is needed. Hence 
consider 

¢t =K1 (¢, l/!, ¢"" l/!"" ••• ), 

l/!t = K 2(¢, l/!, ¢"" l/!"" ••• ), 

(la) 

(lb) 

where Kl and K2 are functions of ¢ and its first m + 1 
spatial derivatives as well as l/! and its first 1 + 1 spatial 
derivatives. Let S be the set of ¢ and its first spatial 
derivatives and l/! and its first I spatial derivatives. The 
set of all pseudopotentials associated with system (1) 
is the set of all functions ql(X, t), 1 = 1, ... , n, n arbi
trary such that 

q~=Fi(S, qt, ... , qN;x, t), 

q~=Gi(S,qt, ... ,qN,x, t) 

are integrable subject to constraint (1). 

(2a) 

(2b) 

A subset of (2), of special interest, is defined as 
follows. Let q denote an n component column vector. 
The set of all linear pseudopotentials associated with 
(1) is the set of all n vectors q (n arbitrary) such that 

q",=F(S)q, (3a) 

qt= G(S)q (3b) 

are integrable subject to constraint (1), Here ;(S), 
G(S) are nXn matrix functions on S. 

Now suppose F(S) and G(S) have a definite structure. 
In particular suppose 

j 

F(S) = L: ai (S) Xi 
i=1 ' 

(4a) 

j 

G(S) = ~ bi (S) Xi, 
,=1 

(4b) 

where the ai and bi are scalar functions and the Xi are 
constant matrices such that 

j 

[Xr,X'] = L: cTSpXP, (5) 
p=1 

where the bracket denotes the matrix commutator. 
Since the Xi are used to specify q via the first order 
system (3), Eq. (5) is interpreted as defining a Lie 
algebra. 

3. CONNECTION WITH INVERSE METHOD 

It happens that the case when three generators are 
present and they satisfy 

[Xl,X2]=X3, (6a) 

[Xl, X 3 ] = _XZ, 

[X2,X3]=Xl 

(6b) 

(6c) 

is of particular interesL In this instance it is readily 
seen that the scalar functions ai and b i , i = 1, 2, 3 must 
satisfy 

a} + a2b3 - a3b2 = b!, 

a~ + a3b1 - a1b3 = b~, 

a~ + a1b2 
- a2b1 = b~, 

if the system (3) is to be integrable. 

(7a) 

(7b) 

(7c) 

A specialization of system (7) has been fully investi
gated in Ref. 5 in connection with the generalized 
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Zakharov-Shabat eigenvalue problem. To see this it 
is only necessary to let 

a1=-i(1f;+l/», (8a) 

a2=1f;-l/>, (8b) 

a3 = _ 2X, (8c) 

(ib1 - b2)/2 =B, (8d) 

(ib1 +b2)/2 =C, (8e) 

ib3/2 =A. (8f) 

It then easily follows that 

Ax=l/>C -1f;B, (9a) 

Bx + 2iXB = l/>t - 2l/>A, (9b) 

Cx - 2iXC = 1f;t + 2M. (9c) 

This set of scalar equations has been used in Ref. 4 to 
find equations that are soluable by the inverse scatter
ing method via the Zakharov-Shabat eigenvalue prob
lem. The infinity of nonlinear partial differential equa
tions that can thereby be solved include, for example, 
the KdV, modified KdV, and nonlinear Schrodinger 
equations. 

To this point no representation of (6) has been used. 
The derivation leading to (9) used only the algebraic 
properties of the Xi. The 2 x 2 matrix representation 
of su(2), 

Xl=~ G ~), X2=~ (~ -0
1
), X3~~G _°1)' (10) 
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satisfies (6). It is easily checked that the standard 
generalized Zakharov-Shabat eigenvalue problem 
follows by using (8) and (10) in (4). 

The algebra of the linear pseudopotentials considered 
above can be identified as su(2). However, the various 
connections6 between the (real and complex) Lie alge
bras su(2), so(3), and sl(2,R) make other identifications 
possible. The application to the inverse scattering 
method suggests the su(2) identification. It is not dif
ficult to show that simple pseudopotentials have an 
algebraic structure specified by (6) (with the appropriate 
definition of the bracket, see Refs. 2 and 3). In this 
case the sl(2, R) identification seems appropriate. 

Finally, it should be noted that the key results above 
do not depend on (1) being evolution equations. All the 
equations considered in Ref. 4 yield the same algebraic 
structure. This is clear from (7), (8), and (9). 
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relativity in discrete space-time * 
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Classical electrodynamics is reconstructed in discrete space-time. then combined with Regge's discrete 
version of general relativity. Quantization using path integrals is considered briefly. 

1. INTRODUCTION 

By using what might be described as a "geometric 
interpretation" of Maxwell's equations we will show that 
electrodynamics can be transferred, in a natural way, 
from continuous space-time parametrized by coordi
nates to a discrete version of space-time which re
quires no coordinates but retains some of the geometric 
structure of continuous space-time. Then we will com
bine this result with a formulation of general relativity 
proposed by Regge1 and obtain a discrete, coordinate
free model incorporating both electrodynamics and 
gravitation. 

One of the motivations of this work is simply that it 
provides an interesting way of looking at interacting 
electrodynamics and gravitation. Another is the familiar 
suspicion that a fully satisfactory cure for the ultravio
let divergences of relativistic quantum field theory will 
eventually require some form of discrete space-time. 
Thus it seems useful to see what discrete theories sug
gest themselves as natural extensions of existing con
tinuous theories. Finally, the theory we will construct 
may also have some practical value. The dynamical 
equations we will obtain are algebraic rather than dif
ferential and are therefore convenient for solution by 
computer. 2 The solutions gotten in this way should ap
proximate solutions to the differential equations of the 
continuous theory, but the theory we will derive is not 
simply the result of replacing space-time by a lattice 
of points and derivatives by finite differences. Instead, 
the discrete theory retains geometric features of the 
continuous theory, and we expect that as a consequence 
it will approximate the qualitative behavior of the con
tinuous theory more efficiently. 

The theory we will describe is classical; the extent to 
which it might be quantized using Feynman path inte
gration will be discussed briefly toward the end of this 
paper. 

2. CHAINS, BOUNDARIES, AND COBOUNDARIES 

We will begin by describing an interpretation of some 
operations which can be performed with arbitrary anti
symmetric tensor fields on four-dimensional curved 
space-time. Then we will apply these ideas to electro
dynamics. Most of the definitions we will use are famil
iar notions of differential geometry. 3 For convenience 
we will assume space-time is topologically trivial. The 
extension of our results to nontrivial topologies will be 
fairly obvious. 

A four-dimensional manifold can support five differ
ent sorts of covariant tensor fields antisymmetric in all 
indices: scalar fields, vector fields, and antisymmetric 
tensor fields with two, three, or four indices. Antisym
metric tensor fields with five or more indices vanish 
identically. We will call each such field an n-chain, 
where n is the number of its indices. By exterior 
differentiation we can map the set of n-chains into the 
set of (n + l)-chains. That is if we represent an arbi
trary n-chain by In), exterior differentiation by V, and 
the components of In) in a coordinate basis by f.:

1
)"'''n 

we have 

[V,!(O)] = _O_j(O) 
"ax" , 

[V,! (1)] _ _ O_j(1) _ a (1) 

"v- ax" v oxvj", 
(2.1) 

[V,!(2)] a j(2) a j(2) a j(2) 
"vX = ax" vX - oxv "x - oxx v,,, 

[ 
(3)] a (3) a (3) a (3) a (3) 

Vj "vX4> = ox"j vX4> - axvj "X4> -a;;:jv"4> - ox4>j vX,,' 

EachjW is mapped to 0 by this operation. On the other 
hand, by taking divergences, each n-chain can be 
mapped to an (n -l)-chain. Representing the divergence 
operator by - ~ and converting it to a form convenient 
for use on antisymmetric tensors we have 

(2.2) 

where the quantity g is the determinant of the covariant 
metric tensor g"v which we choose to have signature 
(+ - - -). The result of A acting on any O-chain is de
fined to be O. Definitions (2.1) and (2.2) yield the 
identities 

VVj(n) =0, 

~~j(n) =0, 

for allj(n). 

(2.3) 

(2.4) 

Next let us define an invariant inner product between 
pairs of n-chains 

(f(n) Ih(n)=~ fd4x(_g)I/2j(n)"I°··"nh~nl).""n' (2.5) 

It follows that if all the chains we considlir are required 
to vanish suffiCiently rapidly at "", the operation V is the 
adjoint of A: 

(2.6) 
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This relation is a version of Stokes theorem. 

But at each point in space-time an n-chain with n ~ 1 
may be considered the tangent to an oriented n-dimen
sional surface. Thus the full n-chain may be thought of 
as a formal superposition of n-surface tangents each 
weighted with an appropriate coefficient. This picture 
can be extended to include n = 0 by considering a point 
to be a O-dimensional surface and defining the tangent 
to a point to be a real number. Consider the n-chain, 
n ~ 1, giving the tangent to a single oriented n-dimen
sional surface L; parametrized by the map Yi - X"(Yi), 
where i runs from 1 to n, 

f(n)"10""n(z)=(_g)"1I2~dny 0(4)[Z -x(y)] 

x a(x"1 •• ·x"n) 
a(y! ••• Yn) • 

The multiplicative factor (- g)1I2 is necessary to make 
fIn) a tensor and 

a(x"1 • •• x"n) 

a(Y1'" Yn) 

is the Jacobian of the map (y" .•• ,Yn)- (X"1, .•• ,x"n). 
For a point x we will choose the corresponding f (0) to be 

f(O)(z) = (_g)"1I2 0(4)(Z -x). 

If we now evaluate [6.f(n)]'"'(··"n-l for the tensor fIn) of 
the surface L;, we find we have obtained the (n-l)-sur
face tensor of the boundary of L;. For example, for a 
tensor f(2) representing a 2-surface parameterized by 
Y1 and Y2 both running from 0 to 1, we have 

Thus we will refer to 6. as the boundary operator and 
its adjoint V as the coboundary operator. 

Finally let us examine the action of the inner produce 
on the tensor fIn) of a single surface L; for which the 
number, s, of linearly independent spacelike tangent 
vectors is the same at all points. Now the inner product 
we have defined actually gives infinite norm for a sur-

166 J. Math. Phys., Vol. 18, No.1, January 1977 

face of 0 thickness and dimension less than 4. However, 
by giving the surface a small thickness greater than 0 
and then compensating for this thickness with an appro
priate normalization, a useful finite result can be ob 
tained. Let Yu ••• 'Yn parametrize L; and let Yn+1,··· 'Y4 
parametrize a family of nearly identical copies of L; dis
placed from each other slightly in the direc tion ortho
gonal to L;. Define the proper (4-n)-dimensional measure 
of the region L;' swept out by Yn+1," . 'Y4 at fixed 
Yt> ••. ,Yn to be m(4-n)(L;'), 

m(4-n)(L;') = ( dYn+!'" dy 
je' 

1 I Cl(x"n+l ••• x"4) + --
(4-n)! a(Yn+l" 'Y4) 

1/2 

xg"n+1Vn+l'" g"4v4i (2.7) 

and require m(4-n)(L;') to be the same for allYl"" ,Yn' 
For n=4, m(4-n)(L;') is defined to be 1. Then the normal
ized n-surface tensor 

l

a(x"n+l ••• X "4) a (X vn+1 ••• XV4) \112, 
x Cl(Yn+!'" Y4) a(y n+! •• 'Y4) g"n+lv

n+l" ·g"4v
4 

yields the value 

(t(n) If(n»=(_l)'m(n)(L;), 

where, for n ~ 1, m(n)(L;) is the proper n-measure of L; 
given by an expression of the same form as (2.7), and 
the proper O-measure of a point is defined to be 1. 

The preceding ideas can be applied to electrodynamics 
immediately. The electromagnetic field F is a 2-chain 
and therefore corresponds to a weighted superposition of 
two-dimensional surfaces; the vector potential A is a 
I-chain and therefore a superposition of lines. Max
well's equations are 

(2.8) 

and state that both the boundary and coboundary of the 
electromagnetic field vanish, and the relation between 
F and A, 

F=VA, (2.9) 

states that F is the coboundary of A. An ac tion in tegral 
which yields (2.8) is 

A = <VA iVA) (2.10) 

if (2.9) is taken as the definition of F. 

3. ELECTRODYNAMICS IN A SIMPLICIAL COMPLEX 

We will now replace continuous space-time with a 
form of discrete space-time which can be equipped 
with a natural set of n-chains, a boundary operator, an 
inner product, and a coboundary operator, and these in 
turn will allow us to reconstruct electrodynamics. 4 The 
mathematical designation for the discrete space-time 
we will describe is a "simplicial complex. 5" 
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Let So be a set containing at most a countably infinite 
number of elements. For convenience we will take So to 
be either the integers or a proper subset of the integers. 
For each n = 1, ... ,4 let S" be a set of (n + I)-tuples of 
elements of So. We require that if {it> ••• i"ol}' n ~ 1, oc
curs in So, then each subset of {ii, .•• ,i"ol} is an element 
of some Sm, m ~ n. From every element of S" form all 
possible distinct ordered (n + I)-tuples. These will be 
written [it> ••• ,i"+t1 and may be thought of as oriented n
surfaces. Each will be called an n-simplex. By allowing 
n-simplexes to be formally multiplied by arbitrary real 
numbers and then forming finite sums of such quanti
ties, the collection of n-simplexes can be turned into a 
vector space. A vector in this space will be called an n
chain and written c("). If Cil' ••• ,j"+t1 is a permutation of 
[it> ••• ,i"ol]' we assume 

Cil" .• ,j"otl = (- l)P[il>' .. , i"ol]' 

where P is 1 for an odd permutation and 0 otherwise. 
Each c(") can be written in the form 

c(") = 6 C(")(il,' " , i"ol)[it> •.. ,i"+d, (3.1) 
(il .... ·i"+IJEU" 

where c(") (it> •.. ,i"+I) is a real number and the set of 
oriented simplexes U" contains exactly one (arbitrarily 
chosen) ordering Ci I, ••. ,jn+tl for each 
{i l , ..• , i"+I}E Sn. 

A boundary operator A taking any c(") into some c(n-U 

can be defined as follows. For an individual n-simplex 
assume 

~ A 

A[i l , ••. , in+t1 = L.; (- 1)I+1[il , ... , ii'" . , i"+d, (3.2) 
J.I 

where the symbol ii indicates i j has been omitted and the 
result of omitting i from the O-simplex [i] is O. The ac
tion of A on an arbitrary n-chain is gotten from (3.2) by 
requiring A to be linear. It follows that 

AAC(") =0 (3.3) 

for all c(") • 

Next we will construct an inner product (c(") Id("» on 
n-chains. For any individual n-simplex assume 

([it, ••• ,i"+d I [iI, .•• , i"+I1> ==)..l (il> ••• , i"+I), (3. 4) 

where )..l (ii, ••• ,i.+I) is a real number; for each pair of 
simplexes differing in the set {it> ••• ,i"+I} from which 
they are formed assume 

(3.5) 

For any O-simplex [i], )..l(i) is chosen to be 1. For n 
~ 1, )..l (il> ..• ,i.+t) can be either positive or negative, 
but for convenience we exclude )..l (ii, ••• ,i.+I) = O. Those 
n-simplexes with negative measure may be thought of as 
containing an odd number of linearly independent space
like vectors. The inner product between arbitrary n
chains is gotten from (3.4) and (3.5) by requiring 
(c(") I dIn»~ to be linear in each of its arguments. The 
coboundary operator V can now be defined as the adjoint 
of A with respect to the inner product. Equation (3.3) 
combined with the restriction )..l (it> ••• ,i.+1) #0 0 for all 
[it> ... ,i.+tl E U. implies 

VVc(/f)=0 
for all c(n) • 
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(3.6) 

Finally we must impose a number of constraints on 
the structure of the simpliCial complex to insure that it 
adequately approximates a curved four-dimensional 
space-time governed by a metriC with signature 
(+ - - -). First we need a pair of "topological" require
ments: each (n - I)-Simplex must occur in the boundary 
of at least one n-simplex, for n = 1, ... ,4, and each 
3-simplex must occur in the boundary of exactly two 
distinct 4-simplexes. These conditions imply, roughly 
speaking, that the complex will not have any isolated 
regions of dimension lower than four, any boundaries, 
or any "joints" which would require a space of dimen
sion higher than four for a local embedding. The signi
ficance of the two conditions we have just given can be 
pictured more clearly by considering the effect of cor
responding requirements on a complex composed only 
of 0-, 1-, 2- and 3-simplexes. It can be proved5 that if 
these conditions are fulfilled then there is necessarily 
some curved, continuous four-dimensional space-time 
which can be covered with the SimpliCial complex in such 
a way that each 4-simplex is aSSigned to a unique singly 
connected 4-volume, each 3-simplex assigned to a 
unique singly connected 3-volume and so on. 

We will also need a second set of constraints which 
are "metric. " Consider a single 4- simplex [it> ••• , i 5] 

and all the 3-, 2-, 1-, and O-simplexes which can be 
formed from subsets of {ii, ... ,i5}' Let us embed this 
collection of simplexes in flat Minkowski space by as
signing each O-simplex (j] to a point p{j), each I-sim
plex [it,jz] to a straight line p(jt>jz) running from P(jl) 
to p(jz), and so on. If pll(j) are the Minkowski space 
components of p(j), each n-simplex can be assigned to 
an n-indexed antisymmetric surface tensor by the 
relations 

Mllt· .... ·(it, ••. ,j"+I) 

=:Mll
l .. • ... - t (j I>jz, ••• ,j"_l,j.)M"'( jl,j.+l) 

-Mll l· ..... -1(jt>jz, ••• ,j.-t>j"+I)M"·(it,j") 

0 •• - M ll t"' Il "-I(jI,j"+i> ••. ,j"_I,j.)MIl"(it,jz). 

Then let the function NUl", . ,j"OI) be given by 

N( . .) 1 Mil '''Il ( . .) 
}j, ••. ,1.01 =:, 1 " 11,··· ,1"+1 n. 

where Tjll~ is the Minkowski metric. From N(j I,. " ,j"ol) 
define a Signed proper n-measure for each n-simplex 
by 

( . .) N(jl,···,j"+d 
)..l 11,···,1"+1 ==";IN(' ')1 11, ... ,1"+1 

(3.7) 

It follows that for each n-simplex, [)..l(jl"" ,j"+I)]2 can 
be expressed as the absolute value of a homogeneous 
polynomial of degree 2n in the set of I-measures 
)..l(it,h). Let us abstract this set of equations and use it 
to determine each [)..l(jl"" ,jnol)}2, n~2, in (3.4) from 
the set of )..l(it,h) in (3.4). In addition, since the embed
ding we have made is in flat Minkowski space with sig
nature (+- - -), the quantities )..l(jl>'" ,j.ol) in (3.7) 
fulfill a set of inequalities. For example, the 4-measure 
)..l (ii' ... , i5) must be negative, and if three I-Simplexes 
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with positive measure form the boundary of 2-simplex, 
then the measure of the 2-simplex must be negative. 
Let us also abstract this set of inequalities and impose 
them on the measures in (3.4). Once the various metric 
constrains we have just described are imposed, the sim
plicial complex's inner product ( ••• I ••• ) acting on 1-
chains becomes the discrete version of the metric tensor 
g/J.v of curved continuous space-time. 

We can now construct electrodynamics on the simpli
cial complex simply by reinterpreting each of the quanti
ties in Eqs. (2.8), (2.9), and (2.10). If F' is a 2-chain 
on the simplicial complex, .6. the complex's boundary 
operator, and V the coboundary operator, then Eqs. 
(2.8) become the simplicial complex's version of Max
well's equations. If A is now a I-chain on the complex, 
(2.9) is again the relation between the electromagnetic 
field and potential. Using the complex's inner product 
(2.10) becomes a satisfactory action integral. We have 

oA =(VoAIVA)+(VAIVoA) 

(3.8) 

but since we assumed none of the JJ.(i[,'" ,in) in (3.4) 
are 0, (3.8) implies 

.6.VA=O. (3.9) 

USing (3.9), (3.6), and (2.9) we obtain (2.8). 

4. ELECTRODYNAMICS AND GENERAL RELATIVITY 

A formulation of general relativity on a simplicial 
complex developed in Ref. 1 can be described as follows. 
The metric tensor of continuous space-time g/J.v is re
placed by the inner product of the simpliCial complex 
acting on the set of 1-chains, while the curvature tensor 
R /J.vaB is replaced by a symmetric bilinear form 
R[e(2), e(2),] on the set of 2-chains of the simplicial com
plex. Using the inner product on the set of 2-chains, the 
bilinear form R[e(2), e(2),] can be related to a linear oper
ator R on 2-chains: 

R[e(2), e(2),] = (e(2) IRe(2),). 

If [i,j, k]* is the dual to the 2-simplex [i,j, k] given by 
the linear map 

[i,j, k]* : e(2) - ([i,j, k] ic(2», 

then, in obvious notation, R has the diagonal form 

R = ~ R(·· k)[i,j,k][i,j,k]* 
L.J t,), ( .. k) 

[i,J,kJEU2 JJ. Z,), 

where R(i,j, k) is a real number which can be expressed 
as a function of the values of the inner product on the 
set of I-simplexes, JJ.(i,j). UsingR orR(i,j,k) the ac
tion integral of general relativity becomes 

Tr(R) = 2; ([i,j, k] IR[i,j, kJ) 
[i,J,kJEU2 

2; R(i,j,k)JJ.(i,j,k). 
[i,J,kJEU2 

Einstein's equations are gotten by requiring 

oTr(R) 
oJJ.(i,j) 

o 

for all [i,j] E Ut • 
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(4.0 

An action for interacting gravity and electrodynamics 
can now be obtained simply by adding (4.1) to the action 
for electrodynamics in Sec. 3, 

A=Tr(R) +(VA IVA). (4.2) 

If we vary this with respect to A, Maxwell's equations 
(2.8) are reproduced again. Varying with respect to 
JJ.(i,j) for all [i,j]-=: U1 we obtain the interaction version 
of Einstein's equations. The first term on the right side 
of (4.2) yields 

o Tr(R) 
oJJ.(i,j) 

~ oR(i',j', k') (.,., k') 
L.J " (..) JJ. t ,) , 

[i',J',k' JEu2 vJJ. Z,) 

o ("' ., k') 
+ 2; R(i',j', k') JJ."z ('! ~) , (4.3) 

[i',J',1I1EUZ vJJ. t,} 

but it is shown in Ref. 1 that the first term on the right 
side of (4.3) vanishes. In addition, the "metric" con
straints imposed on the complex in Sec. 3 give 

16JJ. (i,j, k)2 = 12JJ. (i,j)2JJ. (j, k)2 + 2JJ. (i, k)2JJ. (j, k)2 

+ 2JJ.(i,k)2JJ.(i,j)2 - JJ.(i,j)4- JJ.(j,k)4- JJ.(i,k)4\ 

(4.4) 

and JJ.(i,j,k) has the same sign as the argument of the 
absolute value. The second term on the right of (4.3) 
becomes 

o Tr(R) 
oJJ. (i,j) 

"6 R(i,j, k')JJ.(i,j) 
U,J, IIJEU2 

x [JJ. (j ,k,)2 + JJ. (i, k,)2 - JJ. (i,j)2] 
1JJ.(i,j,k') I (4.5) 

Varying (VA IVA) with respect to JJ.(i,j) yields 

o(VA IVA) 
oJJ.(i,j) 

o 2; (AI.6.[i',j',k']) (.6.[i',j',k']IA) 
=-",,-(,;-.) " (';',)·',k') v,.... .,) [i',J',k'lEU2 ,.... • 

~ {(VA l[i,j,k'])([i,j,k'] IVA) ( .. ) 
=- L.J 18 (. ·k,)31 JJ.z,) 

[i,J,1I1Eu2 JJ. Z,), 

X [JJ.(j,k,)2+JJ.(i,k,)2- JJ.(i,j)2]} 

2(A l[i,jJ) ([i,j] 1.6. VA) 
+ JJ. (i,j)2 

(4.6) 

Using Maxwell's equations and combining (4.5) and 
(4.6), the interacting version of Einstein's equations 
for the simplicial complex can be written 

"6 {([i,j, k'] IR[i,j, k']) 
[i,J,k'lEU

2 
I JJ.(i,j, k') I 

([i,j, k')1 VA><VA, [i,j, k') } 
-p 1JJ.(i,j,k,)3, 

x[JJ.(j ,k,)2+ JJ.(i,k,)2_JJ.(i,j)2]=O (4.7) 

for each [i,j] E U t where the sum is carried out over k'. 

Solutions to (4.7) can be interpreted as approximate 
solutions to the differential equations of continuous in
teracting gravity and electrodynamics by a straight-
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forward extension of methods described in Ref. 1. 
Roughly speaking, each 4-simplex is mapped into flat 
Minkowski space, then continuous fields are constructed 
from corresponding discrete quantities by smoothly in
terpolating each from the simplexes on which it is de
fined onto the remainder of Minkowski space. The de
tails will not be given here. 

5. QUANTIZATION 

The theory described so far is classical. We will now 
consider quantization using a Feynman path integral. 

If the simplicial complex and its inner product are 
assumed given, the electromagnetic field by itself can 
be quantized without great difficulty. For convenience 
let us restrict the set of pOints So on which the complex 
is based to be finite. The various other requirements on 
the complex, given previously, remain unchanged. 

The first candidate for an n-point function is the 
integral 

T[A(il,jl)'" A(in,jn)] 

n [f dA(i,j)] exp(i(VA IVA») TI A(il,jz)' (5.1) 
[i,ilE:U I I=j 

where A(i,j) is defined by (3.1). But if A is an arbitrary 
O-chain, Eq. (3.6) implies the action (VA IVA) is invari
ant under the gauge transform 

A'=A +VX. (5.2) 

The orbit obtained by applying all such transformations 
to a fixed A has infinite volume. Therefore, (5.1) 
diverges. This difficulty can be corrected by an adapta
tion of the work of Fadeev and Popov. 6 

Since the complex is finite the subspace of 1-chains, 
Q, which can be expressed in the form VA is finite 
dimensional. Let the set of 1-chains aj, a2, •• , form a 
linearly independent basis for Q and let 
at> a2, ... ,At>A2' ••• form a linearly independent basis 
for the entire space of 1-chains. There are many differ
ent ways At>A2' • ,. can be chosen. Each possible 
choice is equally good for our purposes. An arbitrary 
1-chain e(l) can be written in two distinct forms 

(5.3) 

c(1) = 6 e(1)(k)Ak +6 c(l)'(k) ak' (5.4) 
k k 

The relation between the two sets of coefficients is a 
linear transformation 

c(1) (i, j) = 6 L(i,j I k) e(l) (k) + 6 L'(i,j I k) CO)' (k), (5.5) 

" " 
where 

L(i,j / k) = /-L (i,jr
j
( [i,j] /A,,), 

L'(i,j ik) =/-L(i,jt1([i,j] ia,,>. 

If D is the determinant of the linear transformation 
(5.5), the integral in (5.1) can be rewritten 
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x (VAljl VAI2~~I[~ L(im,jm Ip )A(p) 

+ ~L'(im,jm Ip)A'(P)} (5.6) 

The coefficients A '(k) do not appear in the argument of 
the exponential in (5.6) since each ak fulfills Va" == O. 
Therefore, the integrals over dA '(k) in (5.6) diverge. 
We now Simply omit these integrals and set eachA'(k) 
in the remainder of (5.6) to O. This procedure is equiva
lent to a choice of gauge in canonical quantization of 
continuous electrodynamics. The n-point functions 
we obtain will then depend on precisely how the set 
A j ,A2, • " was chosen, but if the n-point functions for 
A are used to construct n-point functions for quantities 
such as VA, which are invariant with respect to the 
gauge transform (5.2), the result can easily be shown 
independent of the choice of A j ,A2, •••• Our replace
ment for (5.6) is now 

TI(f dA(k)]exP[i 6 A (lj)A(l2)(VAllivAlz>] 
" 11' 12 

X ~J~L(im,jm iP)A(P)]. 

This expression is still not finite, however, since the 
equation 

6A(l)~VAI==O 
I 

has nonzero solutions and therefore the matrix (VAl / 
1 

VA I2> has 0 as an eigenvalue. This further difficulty 
can be circumvented by introducing a small "photon 
mass" E extremely close to O. 

Our final result becomes 

T[A(i l , i l )' •• A (in,jn)) 

=f1 [ f dA (k)] exp~ i 6 A(ll)A (l2) 
" \.l j ./2 
X [(VAl IVAI )_E 2(A I IAI )]} 

j 2 j 2 

X E[~ L(im,jm Ip)A(P)} 

This is a Gaussian integral and can be expressed using 
the inverse matrix Mkjk2 defined by 

6 M"j" [VAk j VA" ) - E2(Ak jA,,)] == 0" " . "2 2 2 3 2 3 13 

For example, if the vacuum to vacuum amplitude is 

T:=TI f dA(k) exp~i 6 A(lI)A(l2) 
" \.11'12 

X (VAl IVA,) - E2(A, IAI )]}, 
I 2 I 2 

then the normalized 2-point function becomes 

T(A(i j ,h)A(i2,hlVT 

= 6 L(i j,jllk j)L(i2,h Ik2)M"j/lz' 
"j ,k2 

The question which remains is whether path integra
tion can also be used to quantize the simpliCial com
plex's metriC, given by the collection of 1-measures 
/-L (i,j), or the complex's topology, described by the sets 
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So, ... ,S4' If the complex's topology is fixed, we would 
expect that the set of /l(i,j) could be quantized since 
path integral quantization has been carried through, at 
least formally, for the metric of the continuous theo
ry. 6.7 Quantization of the discrete theory may actually 
be simplified to some extent by the absence of frame 
dependent quantities. Once a path integral has been put 
together its behavior could perhaps be determined using 
methods similar to those Wilson8 has applied to conven
tional field theories on a lattice. Quantization of the 
complex's topology, however, is a more difficult ques
tion. I hope to return to this subject elsewhere. 

After this work was completed, I was informed that 
a similar formulation of Maxwell's equations on a sim
plicial complex has been discussed by Sorkin. 9 Sorkin's 
version is dual to the construction given here in the 
sense that fields in the present paper are represented 
by linear combinations of simplexes while Sorkin's 
fields are functions over the set of simplexes. 

170 J. Math. Phys., Vol. 18, No.1, January 1977 

*Supported in part by the U. S. Energy Research and Develop
ment Administration. 

tPresent Address: Physics Department, Indiana University, 
Bloomington, Indiana 47401. 

IT. Regge, Nuovo Cimento 19, 558 (1961). 
2Computer solutions of Regge's theory by itself have been done 
by P. A. Collins and R. M. Williams, Phys. Rev. D 7, 965 
(1973). See also R. Sorkin, Phys. Rev. D 12, 385 (1975). 

3S. Kobayashi and K. Nomizu, Foundations of Differential 
Geometry Unterscience, New York, 1963). 

4This was suggested in part by D. Bohm, B.J. Hiley, and 
A.E.G. Stuart, Int. J. Theor. Phys. 3, 171 (1970). 

5 A discussion of simplicial complexes is given by p. S. 
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Is the Wick square infinitely divisible? 
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We derive a sort of lkvy-Khintchine formula for the Wick square of the Euclidean free field in two and 
three dimensions and use it to show that the Euclidean Wick square is infinitely divisible. On the other 
hand, by analyzing the truncated four-point function we prove that the relativistic Wick square is not 
infinitely divisible in any space-time dimension. 

1. INTRODUCTION 

In a recent paper1 it was shown that any field can be 
decomposed into (indecomposable) prime fields and an 
infinitely divisible field. A field was shown to be infinite
ly divisible if and only if its truncated n-point functions 
are conditionally positive definite. If the generating (or 
characteristic) functional E(f) exists, this is equivalent 
to E(f)1In again being a characteristic functional for each 
natural n. 

Clearly, the free and generalized free fields are in
finitely divisible since all the truncated n-point functions 
vanish except the two-point function. In the following we 
investigate the Wick square as another possible candi
date. It turns out that in the Euclidean case (in two and 
three dimensions) it is infinitely divisible, whereas in 
the relativistic case (in any dimension) it is not. 

This lends support to the conjecture that the relativis
tic free and generalized free fields are the only infinite
ly divisible fields satisfying all Wightman axioms. With
out the cluster property, however, there are a host of 
such fields. For example, if W == (1, Wi> W2 , 0 •• ) is any 
Wightman functional then W == exp(W - 1) is infinitely 
divisible and satisfies all Wightman axioms except 
clustering. 1 

2. INFINITE DIVISIBI L1TY OF THE EUCLIDEAN 
WICK SQUARE 

Let Ho == - ~ + 11/
2 , where ~ is the two- or three-dimen

sional Laplacian. The characteristic (generating, ex
pectation) functional E(f), fE!), of the Euclidean Wick 
square of a free Euclidean field with mass m is given by 

E(f) = (exp[i : q;.2 : (f)J) 

= exp{- t Tr[ln(1- 2ifHr/) + 2ifHo-
1]}. (2.1) 

The matrix identity det4 = exp(Tr InA) implies 

exp( Tr InA -1 B) = exp(Tr InB - Tr InA) 

and thus we obtain 

E(f) = exp{- t Tr[(Ho - 2if) - InHo + 2iJHo1]}. (2.2) 

It suffices to show that the exponent is conditionally 
positive definite, 2 1. e. , L: A/1.i InE(f/ - fi) ?- 0 if L: A/ = O. 
To do this we use the identity3 

('" d~ 
- lnz = io T {exp(- z~) - exp(- ~)} 

valid for Rez > O. Thus, with HOi == fO' d~ exp(- Ho~), one 
gets 

E(f) = exp{t J'" ~-1 d~ Tr[exp(- Ho~ + 2iif) 
o 

- (1 + 2iif) exp(- Ho~)]}. (2.3) 

Let Kt(x,Y) be the kernel of exp(-Ho~). Note that Kt(x,y) 
> O. By the Trotter product formula4 one has 

exp[ - Ho~ + 2i(f/ - fiH](x,y) 

= lim J dXl 0'0 dXn_1KOn(X,Xl) 

x exp{2i[j/(Xl) - fj(xl)l~/n} 0 0 0 

xK(/n(xn_t,y) exp{2i[j/(y) - fh)l~/n}. 

Now, the integrand is positive definite in (i,j) since the 
KOn's are positive. Equation (2.3) then shows5 that InE 
is conditionally positive, and thus E is infinitely 
divisible. 

An alternative proof can be based on finite-dimension
al apprOXimations of E(f). 

Remark: Equation (2.3) resembles a Levy-Khintchine 
decomposition of the Euclidean Wick square. The indi
vidual components also determine Euclidean fields. In 
general, however, they cannot satisfy T positivity6.7 or 
Osterwalder-Schrader8 positivity by the result of the 
next section. Their truncated n-point functions, 1. e. , 
the n-point functions of the integrand in Eq. (2.3) can 
be calculated from the Dyson series 

exp[(-Ho +2if)~1 

== t it dt1 tl dt2 0 0 0 t n-1 dtn exp(- t,/loH2if) 
n=O 0 0 0 

x exp[ - (tn-l - tn)Ho] (2if)·· 0 (2if) exp[ - (~- t 1)Hol. 

After removing the first two terms the series converges 
absolutely in trace norm since exp(- tHoU is the Hilbert
Schmidt. Integrating over d~/~ leads to the truncated n
point functions of the Euclidean Wick square with con
vergence in trace norm if max If I < m 2

• This justifies, 
a posteriori, the previous steps. 

3. THE RElATIVISTIC WICK SQUARE IS NOT 
INFINITElY DIVISIBLE 

We consider the Wick square of a relativistic gen
eralized free field q;.(x) in arbitrary space-time dimen
sion d. We denote (n, q;.(Xt)q;.(x2)n) by W(X2 - xd. We as
sume that the support of the Lehmann spectral function 
p(m2) has the lowest upper bound M2 < 00. We will show 
that the truncated four-point function of : q;.2 : (x) is not 
positive definite. 

By elementary calculation we get 

~WI(x) 
= W(X2 - X 1)W(x4 - X 3){W(X3 - XZ)W(X4 - Xl) 
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+ W(X3 - XtlW(X4 - X2)} 

+ W(X3 - XtlW(X4 - X,)W(X3 - X2)W(X4 - X2) 

=: U(X) + V(X) . 

The Fourier transform of U 

U(P)=j {5(P, +q, +q4)5(P2-q, +Q3)5(P3+q2-q3) 

X5 (P4 - Q2 - Q4) + 5(p, + Q, +q3)5(P2- Q, +Q4) 
4 _ 

(3.1) 

X 5(P3 + Q2 - Q3)5(P4 - q2 - q4)} n W(qj) dqi (3.2) , 
vanishes whenever p~ > lVI2 or p~ > lVI2• This is important 
because U by itself is positive definite. Indeed, for h 
c=: 5 (ffi2d), 

U(h*i9h)=11 j dx,dx2h(X"X2)W(X2-X,) 

x: </>(x,)</>(X2): n 112? O. 

Now lakefc=:.D(ffid), f positive onK,: ={pl Ipi <~}, 
supp! =K" ](-p)=](P) and define 

gi(P):=](P-ai), i=1, ... ,4. 

Choose9 ~=tlVI, and 

a 1 =(f2 +..f5, -3,0, •• ·)M, 

a2=(f2+..f5, 3,0, ''')lVI, 

a3 = (2..f5, 0, .• • )lVI, a4 = (2 f2, 0, ••• )lVI. 

This implies 

suPpg3 c V2~ (3.3a) 

and 
...., - ....., -

a3-suppW+K,na4-suppW+Ke=r/J. (3.3b) 

Withg=g,®g2+i\g3®g4, i\c=:ffi, we get by (3.3a) 

.ft W[(g*® g) =-r\ W[(gr® gt® gj ® g2) 

+ 2i\ ReV(gr® gt® g3® g4) 

+i\2V(gt®gf®g3®g4)' (3.4) 

We remark that 
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V(gt Q9 gi ® g3 ® g4) 

= j j dvdwW(v)W(w) j j(u +v - a2)j(u +w - a3)W(u)du 

(3.5) 

is positive, because the integrand is nonnegative, and a 
neighborhood of the pOints'O 

u=(v5, -2,0, ···)M, u'=(f2,l,O, ... )lVI, 

v=(f2, -1,0, ".)M, w=(v5,2,0, • .. )lVI 

contributes to the integral. 

On the other hand, 

VW: 19 gj ® g319 g4) 

= j j dvdwW(v)W(w) I J.r(u +v -a3)i(u +w - a4) 

Xw(u)duI 2 (3.6) 

vanishes by (3. 3b). Hence for sufficiently negative i\ 
the right-hand side of (3.4) becomes negative. 

*Permanent address: Institut rur Theoretische Physik, 
Universitat Gottingen. 
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21. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions 
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3r. S. Gradshteyn and 1. M. Ryzkik, Table of Integrals, Series, 
and Products (Academic, New York, 1965) , formula 3.551.6. 
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positivity for almost all x and y one cannot conclude positivity 
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sIf M = ° (and therefore d:O: 3), we choose € =! and al 
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General formalism solving linear recursion relations 
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We give the general solution of multiterm linear homogeneous recursion relations with nonconstant 
coefficients, by introducing a new class of special combinatorics functions based on the partition of an 
interval into classes. This provides power series solutions, whenever they exist, of ordinary linear 
differential equations, of any order, with polynomial coefficients. 

I. INTRODUCTION 

The purpose of this paper is to solve multiterm linear 
recursion relations with nonconstant coefficients. This 
provides power series solutions, whenever they exist, 
of linear differential equations, of any order, with poly
nomial coefficients. Applications to the nonrelativistic 
SchrOdinger equation with polynomial type central po
tentials will be published elsewhere. 1 

Whenever the solution of an Nth order ordinary linear 
differential equation with polynomial coefficients can be 
expanded in a power series, the differential equation 
can be transformed into a multiterm linear recursion 
relation. Since, in general, the resulting recursion 
relation has nonconstant coefficients, the usefullness of 
this type of transformation has up till now been restrict
ed to cases where the resulting recursion relation is a 
two-term one. 

For linear recursion relations with constant coeffi
cients, general solutions exist already, and are ob
tained via the roots of the associated characteristic 
equation. 2 On the other hand, for the case of noncon
stant coefficients, the usual approach is to guess the 
solution and, then, prove it by mathematical induction. 
This is reasonably easy for two-term recursion rela
tions, but becomes unfeasible for multiterm relations. 3 

The general solution presented here for multiterm lin
ear recursion relations with nonconstant coefficients, 
is in terms of special combinatorics functions. These 
functions, rather functionals, are constructed from 
products of the coefficients with their arguments evaluat
ed at a number of discrete points, determined by the 
partition of a certain interval into classes. The relation 
of a combinatorics function to the partitions of an inter
val, is analogous to the relation of the nth order term 
in a scattering cross section to the corresponding 
Feynman graphs. 

The partitions of an interval into classes are related 
to the partitions of the subintervals, differing from it 
by one summond, by an abstract linear recursion rela
tion. This can be most easily and concretely seen by 
considering a variation of the "postage problem" of com
binatorics theory2: 

Given an unlimited number of 3¢', 5¢' and a¢' stamps, 
what are the different ordered arrangements leading 
to a total of m¢'? 

The totality of ordered arrangements each of which 
adds up to m¢' can be separated into three sets, accord
ing to whether they end by a 3¢', a 5¢', or an a¢' stamp. 
Thus, 

{0(stamps) = m} ={{0<stamps) = m - 3} + 3} 

u {{0(stamps) = m - 5} + 5} 

u H0(stamps) = m - a} + a}, (1. 1) 

where {0(stamps) = m} is the set of all stamp arrange
ments, each of which adds up to m¢', and 10(stamps) 
= m - k} + k means that a k¢' stamp is added to the right 
of each arrangement in the set l.0(stamps) = m - k} thus 
bringing up the total to me. 

The above Eq. (1.1) is essentially an abstract linear 
recursion relation, and with a proper choice of mapping 
can be represented by a four-term linear recursion 
relation. The proper mapping in general, is shown in 
Fig. 1, and in the special case discussed above is ob
tained by the following rules: 

(1) Corresponding to each k¢' stamp an arbitrary func
tion fk(X) is introduced. 

(2) Each arrangement of stamps is represented by a 
functional F(m} formed as a product of the functions 
fk(X) in the following manner: 

THE REPRESENTATION OF PARTITIONS 

I s+ Ok 

Singll Ellmlnt ~ - fak (. + Ok I 

Sum of Two 
Ellmlnta 

Partition 

10 II II II 

~+ ~- fa,(s,) 10 ,(") 

I, 1'5 ~·m2 

a, I a. I a. I -

Union of Two Partitions 
m, ., '0 
I 8, I 

FIG. 1. The partitions of an interval (m!, m2) into n parts are 
represented by the functionals F nO (m 1, m2)' The functions fa (x), 
corresponding to the partitioning subintervals ak , are k 

arbitrary. 
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(a) For each ke stamp in the arrangement, there is 
one corresponding Ik(X) function in the product. 

(b) The argument x, of the function Ik corresponding 
to the nth stamp in the arrangement is equal to the sum 
of the first n stamps. 

(3) The set {2:(stamp) = m} is represented by a func
tional C(m) formed as a sum of the functionals F(m) 
corresponding to the arrangements in the set. 

The above mapping transforms the addition and union 
operations of Eq. (1. 1) into multiplication and addition 
respectively as shown in Fig. 1. Thus Eq. (1. 1) is 
transformed into 

C(m) = C(m - 3)/3(m) + C(m - 5)/5(m) + C(m - 8)/8(m) , 

(1. 2) 

which is a four-term linear recursion relation with 
arbitrary nonconstant coefficients. In Sees. II and III, 
we will formulate these intuitive ideas rigorously. 

II. PARTITIONS AND COMBINATORICS FUNCTIONS 

If one is ready to proceed intuitively and sacrifice 
rigor and precision, the solution of linear recursion 
relations can be arrived at rather fast and in a simple 
manner. Nonetheless, our choice is to develop the sub
ject with a certain amount of mathematical rigor and 
precision of language. It is our belief that such an ap
proach will facilitate further development of the theory. 

A. Partitions 

In this section we will establish the language relating 
to the partition of an interval into parts. 4 The parts 
available for the partition form a basic set, A, of 
subintervals: 

(2.1) 

In all subsequent work, whenever we mention the parti
tion of an interval into parts, it is to be understood that 
these parts belong toA . 

An interval (ml> 111 2) can be partitioned into n parts 
belonging to the setA provided that there exists a set 
of nonnegative integers, 

P ={P1, ... , PN}, (2.2) 

satisfying 

N 

6 alPi =m2- m l • 
1=1 

The number of parts, n, is given by 
N 

n=6Pi' 
i=l 

(2.3a) 

(2.3b) 

When m 2 = m1> Eq. (2.3a) can still be satisfied provided 
the Pi'S are all zero. This leads through Eq. (2.3b) to 
n = O. Thus, an interval 01 length zero can be partitioned 
into zero parts. 

The infinite set of real numbers M that can be parti
tioned into parts belonging toA will be denoted by /YI : 

(2.4) 

Furthermore, corresponding to each real number M we 
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form the set;\;(M) given by 

N(M) = {{nl> n2, ... }, M E:/h , 

(/>, M tilh , 
(2.5) 

where ni E" IV (M) if and only if M can be partitioned into 
ni parts. It is evident that when M Eiih no partition is 
possible, by construction of In, and consequently the 
setN(M) is empty. 

The distinct partitions of M Elh into a given number of 
parts n EN (M) will be labelled by an index q. We denote 
by A".(M) the n-dimensional vector whose components 
are the positive subintervals 6 j of the (nq)th partition: 

An.(M) = (61) 02, ... , On), q = 1, ... , qrnax(n) 

where 

(2.6a) 

(2.6b) 

and 

n 

~ OJ =M for q = 1, ... , qrnax(n). (2.6c) 
i =1 

Here q max(n) is the number of distinct partitions of M 
into n parts. According to the above definition, there 
is a one to one correspondence between distinct parti
tions (nq) of M and distinct vectors An.(M). Whenever 
the interval (m1, 1t12) cannot be partitioned into n sub
intervals belonging toA, then, qrnax(n) = 0, and the vec
tor Anq(m2 - m 1 ) does not exist. 

LetD (M, n) be the set of vectors corresponding to all 
partitions of Minto n parts, 

(2.7) 

and D (M) the set of vectors corresponding to all possible 
partitions of M: 

D(M) ={Anq(M); n EN(M); q = 1, ... , qmax(n)}, (2.8a) 

LJ (M) = u D(M, n). (2. Bb) 
nEN (M) 

Since there is a one-to-one correspondence between 
distinct partitions and distinct vectors A, the set of 
distinct partitions of Minto n parts is isomorphic to 
D (M, n), and the set of all distinct partitions of M is 
isomorphic to D(M). Furthermore, we denote by 
D~k(M, n) the set of all n-dimensional vectors A~(M) 
whose ath component is ao. We also denote by j) !;(M) 
the set of all vectors A, irrespective of their dimension, 
which have ak as their first component. Finally, the set 
of all vectors A, which have Gk as their last component, 
will be denoted by fJ~k(M). 

LetAW(M, n) be the subset ofll containing all elements 
a i not entering any partition of Minto n parts, and 
II '(M, n) its complement. Then, 

1I=II'(M,n)uAI/(M,n) and A'(M,n)nA"(M,n)==(/). 

(2.9) 

Similarly, let!i"(M) be the subset of II containing all 
elements ai not entering any partition of M whatsoever, 
and!i'(M) its complement. Then again 
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PARTITIONING (5,16) INTO {3,5,a} 
n q 

5 13 16 
2 I 1 8 1 3 I Fi (5, 16)' '8(13)'3(16) 

5 8 16 
2 2 1 3 I 8 I Fl (5,IS)' '3(8) '8(1S) 

5 10 13 IS 
3 I I 5 I 3 I 3 I F~ (5, IS)·' '5(10)13(13) '~IS) 

I 3 I 13 IS 
3 2 5 I 3 I F~(5.IS) • '3(8)15(13)13(1S) 

5 8 II IS 
3 3 I 3 I 3 I 5 I F33(5.IS) • '3(8lf3(11)15(16) 

FIG. 2. The partitions of the interval (5,16), into the parts 
{3,5,8}, and their corresponding functionals. The parameters, 
vectors, and sets related to these partitions are given in 
Table I, and the corresponding combinatorics functions in 
Table II. 

A =A'(M) uA"(M) and )f'(M) n)f"(M) =C/J. (2.10) 

With each possible partition, (nq), corresponding to 
the vector l),nq(m 2 - m 1 ) we associate the set of (n + 1) 
numbers, {so, SI, ..• , sn}, given by 

or, explicitly, 
j 

SO=1111, Sj=lnl +0 Ok 
k;1 

for n? 1 and 1 ~ i ~ n. 

(2.11a) 

(2.11b) 

In the special case where ml = m2' leading to n = 0, the 
set of s-numbers contains only one element, so' From 
the set of values {so, ... , sn} corresponding to a parti
tion, (nq), of (mb m2), we construct the vector 

Snq(mu m 2 ) = (so, ... , sn), 

n EN(m 2 - ml), q = 1, ... , qmax(n). (2.12) 

As an illustration, we show in Fig. 2 the partitions 
of the interval (5, 16) into the parts {3, 5, 8}. The cor
responding parameters, vectors and sets are given in 
Table 1. 

B. Combinatorics functions 

1. Special combinatorics functions 

With the partitioning subintervals5 (ab •.• , aN), ele
ments of the setA, we associate a set of N functions 
conveniently denoted by fa1' ••• ,jaN' Furthermore, with 
a possible partition (nq) of (mb m 2), we associate the 
functions 

n 

F',,(mb m 2) = n k(Sj), 
1;1 • 

(2. 13a) 

where the OJ, i = 1, ... ,n, are the components of 
l),nq(m2 - ml), and the sj, which are related to the 0i 
by Eq. (2.11a), are the components of S",(mb m 2). When 
no partition of (mb m2) into n parts belonging toA is 
possible, then, n ciN(m2 - ml), qmax(n) = 0, and, in this 
case, we define 
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(2. 13b) 

Since qmax(n) = 0 implies that n ciIV (m2 - ml) and conse
quently, according to (2. 13b), that p"(mb m 2) is zero, 
it is convenient to define: 

(2. 13c) 

It is interesting to note that, when ml = m 2, the interval 
can be partitioned into zero parts, i. e., n = 0, in only 
one way, by setting Pi = 0 for i = 1, ... ,N in Eq. (2. 3a). 
Consequently, q max(O) = 1 for the interval (mb ml)' This 
fact plays a dominant role in the theory and permits 
choosing F1(mb ml) oF 0 since it is associated with a pos
sible partition. It is convenient to normalize this func
tion according to 

FMmb ml) = 1 (2. 13d) 

Equations (2. 13a), (2. 13d) can be combined into a single 
equation by introducing an interval 0o'" 0 and a function 
fo'" 1. Equations (2. 13a), (2. 13c), (2. 13d) can then be 
written as 

F~(ml' m 2) 
n 

n f6.(sj), nEN(m2-ml), q=l, .. . ,qmax(n), 
i =0 t 

0, (2.14) 

By summing the functions F~(mb m2) over all distinct 
partitions of (mb m 2 ) into n parts, we obtain the special 
combinatorics function of the first kind: 

qmax (n) 

Cl (m l ,m2,n)= ~ F~(ml,m2)' (2.15) 
.;0 

On the other hand, by summing the functions, F~, over 

TABLE I. The partition parameters, and related vectors and 
sets, corresponding to the partitioning of the interval (5,16) 
into the set {3,5,8}. The partitions are shown in Fig. 2. 

l),21(1l) =(8,3) 

l),22( 11) = (3,8) 

l),31(11) =(5,3,3) 

l),320l) = (3,5,3) 

l),33(11) = (3 ,3,5) 

Partition parameters 

Partition vectors 

821 (5,16)= (5, 13, 16) 

8 22(5,16) = (5, 8,16) 

831 (5,16) = (5 ,10 ,13 ,16) 

832( 5,16) = (5,8, 13,16) 

833(5,16) = (5,8,11,16) 

Parhtion sets 

0(11,2) ={~I(ll), ~2(11)} 0(11,3) = {l),31(1l) '~2(1l) ,l),33(1l) 

DOl) =D01, 2) u DOl, 3) 

~(ll, 2) = {l),21 (11) } D~(l1, 2) =\'1 O§(1l, 2) = {l),22(1l)} 

~(ll ,3) = {l),31(1l) ,l),dll)} 0~(11, 3) = {~3(11)} O~Ol, 3) =\'1 

\ 

{I ,2} for k = 0,1 , 2 

91(ll,2,k)= {I} fork:3,4,5,6,7 

\'I for k-8,9,10,ll 

{

{1,2,3} for k=O, 1,2 

91(1l,3,k)= {I} fork=3,4 

\'I for k = 5, 6, 7 , 8 , 9 , 10 , 11 
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all distinct partitions of the interval (mb nJ2), we obtain 
the special combinatorics function of the second kind: 

qrnax(n) 

C2(ml, 111 2) =L ~ F~(1111' 1112)' (2.16) 
n Q =0 

From Eq. (2.14) defining F~(ml' IH 2) it is seen that only 
values of n rcN C;n 2 - 1111) will give a nonzero contribution 
to the summation in Eq. (2.16). Consequently, Eq. 
(2.16) can also be written as 

C2(1II1,1112)= ~ C 1(ml, n1 2,n). 
nE/V(m2- ml) 

(2.17) 

Using Eqs. (2.14), (2.15), and (2.17) and the fact that 
fo o =fo '" 1, we obtain 

(2.18) 

2. Constrained combinatorics functions 

The special combinatorics functions of the second 
kind were obtained by summing the functions F~(mb 111 2) 
over all distinct partitions of (1111,111 2), In general we 
can perform summations of the functions F~(}}/I' fI12) 

over a set of partitions, of (JIll, /1/2), satisfying certain 
constraints. When the constraint is that the partitions 
have n parts, the summation leads to the special com
binatorics functions of the first kind. The class of con
straints we will be concerned with in this section is that 
which requires the (lith part in a partition to be greater 
than a ce rtain value do 

By summing the functions F~(/II1' 1112) over all distinct 
partitions of (ml, 1112) into 11 parts subject to the con
straint that the (lith part is greater than d, we obtain the 
constrained combinatorics functions of the first kind, 

where Q", (m2 - ml, 11, d) is the subset of q' s labelling 
those partitions of (nib nl2) into n parts, whose Cl'ih 
part is greater than d. 

On the other hand, by summing the functions F~(ml' m 2) 

over all distinct partitions, of the interval (1111, 111 2), 
subject to the constraint that the first part is greater 
than d, we obtain the constrained combinatorics func
tions of the second kind: 

C2(1111, 111 2, rl) = ~ '0 F~(m1' m 2) • 
n q rc~\ (m2-ml, n ,d) 

(2.20) 

From Eqo (2.14) it is seen that values of n ri N(m2 - ml) 
give a zero contribution to the summation in Eq. (2.20). 
Consequently, Eq. (2.20) can also be written as 

C2(mbI112,d)= .0 Ci(mb m2,I1,d). (2.21) 
nE/V(m2-ml) 

Using Eqs. (2.14), (2.19), and (2.21), we obtain the 
simple but, as will be seen, crucial result 

(2.22) 

Since a1 " 0 is the smallest partitioning subinterval, 
the constrained combinatorics functions of the first and 
second kind reduce to the special ones whenever 0 ~ d 
< a1' Specifically, for d = 0, we have 
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TABLE II. Combinatorics functions corresponding to the 
partitioning of the interval (5,16) into the set {3, 5, 8}. The 
partitions are shown in Fig. 2. 

SpeCial-First kind 

C j (5,16,1) = 0 

C1 (5,16,2) =Fi(5, 16) + F~(5, 16) 

C 1(5, 16,3) = Fl(5 ,16) + F~(5.16) + F~(5, 16) 

C1(5,16,n)=O for n2:4 

Special-Second kind 

C 2(5, 16) = C j (5, 16,2) + C j (5, 16,3) 

Constra ined (with jn = 8 => o! > 3) - First kind 

Cj(5, 16,2 ,3) =F~(5, 16) 

Cl(5, 16,3,3) =Fj(5, 16) 

Constrained (with .io= 8=>01 > 3)-Second kind 

c:::: 2 (5 , 16 , :l) = Cj (5, 16, 2 , :3) + C 1 (5, 16, 3 , :3) 

(;2(5,16,3) = f 8(13)f3(16) +f5(10)f3(1:l)h(16) 

Cr (1111,111 2, n, 0) = C1 (1111,1112,11), 

C2(1II1, 111 2, 0) =C 2(11I1, 111 2), 

(2. 23a) 

(2. 23b) 

According to Eq. (2.19) if {!" (1112 - I1Ib n, d) is empty, 
the constrained combinatorics function of the first kind 
is zero: 

when n !IN(m 2 - 1111), then:.!" (m 2 - 111b n, d) is empty, 
and thus 

(2. 24b) 

Furthermore, if (1111,1112) cannot be partitioned, then 
the setN(m2 - 1111) is empty and consequently n riN(1112 
- 1111) for any 11. Hence according to Eq. (2.21) 

(2.25) 

It is also worthwhile noting that when 1112 < nit. there 
does not exist a set of nonnegative integers Pi' i = 1, ... , 
N satisfying Eq. (2. 3a). Consequently, the interval 
(11111 m2) is not partitionable. Thus according to Eqs. 
(2. 24b) and (2.25), 

(2. 26a) 

and 

(2. 26b) 

As an illustration, the combinatorics functions cor
responding to the interval (5, 16) are given in Table II. 

C. Fundamental theorems 

We will now prove two fundamental theorems con
erning the recursion relations obeyed by the constrained 
combinatorics functions of the first and second kind re
spectively. To simplify the proofs, we first introduce 
four lemmaso 

Lemma 1: For every ak EA '(M, n), there exists at 
least one partition, of the interval Minto 11 parts, 
having its (lith part equal to ak • 
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Proof: Given a positive integer a,,:; n and a partitioning 
subinterval ak EA '(M, n), we need to prove the existence 
of a partition (nq) of Minto n parts (°1 , 02, ... , 0"" ... , 
'\) with 0", = ak • Since ak EA '(M, n), then by construction 
of A'(M, n), there exists at least one partition (nq'), of 
Minto n parts, which includes ak as one of its parts. Let 
this part be 0: = a k • If i = QI., then q= q' and the lemma 
is proved. If i*a, then the exchange of the intervals 
0; and o~ leads to another possible partition of Minto 
n parts, since the total number of partitions is still n 
and their sum is still Mo The rearranged partition (nq) 
is given by OJ=o~ for j*i andj*a, 0i=O~, and 0",=0;. 
Thus o",=ak , and the lemma is proved, 

Lemma 2: The set of partitions of Minto n parts can 
be divided into nonempty disjoint subsets which are in 
one-to-one correspondence with the elements of A '(m, n). 

Proof: Corresponding to each ak EA '(M, n) we form 
the subset of partitions, of Minto n parts, whose Qth 
part is ak • The elements of the subset corresponding to 
ak are represented by the vectors Anqt=" I) ::k(M, n). On 
the other hand the partitions of Minto n parts are 
represented by the vectors Am EI) (M, n). What we need 
to prove is the following: 

(i) The subsets I)~ (M, n) are nonempty and disjoint, 
k 

(2.27) 

and 

D~ (M,n)nD~.(M,n)=~ for i*j 
i ) 

(2.28) 

(ii) D (M, n) can be divided into the subsets D~k (M, n), 

D(M, n) = U D~k(M, n) 
akEA' (M ,n) 

(2.29) 

(iii) The correspondence between f)~ (M, n) and ak 

EA '(M, n) is one to one. k 

According to Lemma 1 the subsets D~ (M, n) are non
empty for ak E/I '(M, n). Thus Eq. (2.27) is established. 
Furthermore, if Anq ED~. (M, n) then its ath component 
is equal to ai, 0", =a j • Since the a;s are all different, 
then, for j * i, aj * a l and hence 0", * aj • Consequently, 
Anq tiD~j(M, n) for any j *i. Equation (2.28) is thus 
established. 

Every vector belonging to D (M, n) is made up of parts 
belonging toA '(M, n), by construction of the later. Spe
cifically the ath part of every vector Anq ED (M, n) is 
equal to some element ak EA '(M, n) and consequently 
~ ED~k(M, n). Conversely, for every ak EA '(M, n), a 
vector Am ED~k(M, n) corresponds to a partition of M 
into n parts and hence belongs toD(M, n). Equation 
(2.29) is thus established. . 

Finally, since for every ak EA '(M, n) there exists a 
nonempty subset f)~k (M, n), and since two subsets 
Da~(M, n) and f)~/M, n), corresponding to two different 
elements of A '(M, n), are distinct (actually disjoint), 
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then the correspondence between the subsets D ~k (M, n) 

and the elements ak of A '(M, n) is one to one. 

Lemma 3: There is a one-to-one correspondence be
tween the partitions of Minto n parts and having their 
ath part equal to ak , and the partitions of (M - ak ) into 
(n - 1) parts. 

Proof: (i) Case n = 1: A partition of M into one part 
is possible, when M = ak for some ak EA. Since the a; s 
are all different, then there exists only one possible 
partition of M into one part. Furthermore, the interval 
M - ak has length zero, and thus can be partitioned into 
(n - 1) = 0 parts in one and only one way. Consequently, 
the one-to-one correspondence is trivially established 
in this case. 

(ii) Case n? 2: Consider a partition (°1 , ••• , O",_b ak , 

0"'+1"'" On) of Minto n parts with 0" =ak • Then the 
partition 

(O{, ... , 0~_1) = (°1, ... , O",_b 0",+1, ..• , On) 

is a partition of M - ak into 12 - 1 parts, since 

(2.30) 

(2.31) 

Furthermore, two distinct partitions, (nq1) and (nq2), 
of Minto n parts and having 0", = ak must differ by at 
least one subinterval, say 0; * o~, for some l * a. Thus, 
they will lead to two distinct partitions, (n - 1, q{) and 
(n - 1, q~), of (M - ak ) into (n - 1) parts, according to the 
correspondence established by Eq. (2.30). 

Conversely consider a partition (o{, 0;, .•• , 0~_1) of 
(M - ak ) into (n - 1) parts. Then the partition 

(2.32) 

is a partition of Minto n parts since 

n (n_1) 
~ 01 = ~ 0; + ak = (M - ak ) + ak • (2.33) 

Furthermore, it is obvious, according to Eq. (2.32), 
that two distinct partitions of (M - ak ) into (n - 1) parts 
lead to two distinct partitions of Minto n parts. 

Thus the correspondence established in Eqs. (2.30) 
and (2.32) is one to one. 
Lemma 4: An interval (M - ak ), with akEA, can be 

partitioned into (n = 1) parts (n;, 1) if and only if the 
interval M can be partitioned into n parts and 
akEA'(M, n). 

Proof: The above lemma can be restated as follows: 

(n - 1) EN(M - ak ) <=>n EN(M) and ak EA'(M, n). 

(2.34) 

(i) n EN (M) and ak EA ' (M, n): Then, by construction of 
A' (M, n), there exists at least one partition, of Minto 
n parts, which includes ak as one of its parts. The ex
istence of a corresponding partition of (M - ak ) into 
(n - 1) parts is then guaranteed by Lemma 3. Hence 
(n-1) EN(M - ak ). 

(ii) (n - 1) E N(M - ak ): In this case (M - ak ) can be parti-
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tioned into (n - 1) parts. Then, by Lemma 3, there exist 
into (n-l) parts. Then, by Lemma 3, there exist 
corresponding partitions, of Minto n parts, having 
one of their parts equal to ak' This means that nE N(M) 
and akE A'(M,n). 

Theorem 1: Given an interval (j, m), ) "" )0, and a set 
A of partitioning subintervals, then 

(2.35) 

for m ")0 and n? 1. 

Proof: According to Eq. (2.9), the summation over 
ak in Eq. (2.35) can be separated into two parts; 

(2.36) 

By Lemma 4, Eq. (2.34), if ak dA '(m -), n), then (n - 1) 
dN(m -) - ak). Thus by Eq. (2. 24b), cl(j, m - ak, n - 1, 
)0 -)) = 0 for ak EA "~em -), n). Consequently 

B fak(m)Cl(j,m-ak,n-l,)o-))=O. (2.37) 
akEA" (m .. j,n) 

In evaluating the sum over the elements of A '(m -), n), 
it is convenient to treat separately the cases n EN(M - j) 
and ndN(m -)). 

(i) The case n ciN(m -)): In this case no partition, of 
(j, m) into n parts, is possible. Thus, by Lemma 4, Eq. 
(2.34), no partition of (j, m - ak) into (n - 1) parts is 
possible either, (n - 1) d/v(m - ak -)). Consequently, 
according to Eq. (2. 24b) , cl (j, m, n, jo -)) as well as 
cl(j, m - ak, n - 1,)0 - )), for all ak EA, is zero. Equation 
(2.35) is thus trivially satisfied. 

(ii) The case nEN(m -)): In this case/v(m -j) "'¢ 
and, consequently, (m -)) Elh . We will consider the 
cases n = 1 and n '. 1 separately. 

(a) n = 1: Then (j, m) can be partitioned into one part; 
there exists an at EA satisfying 

m-)=at (2.38) 

Since the ak ' s are all different then m - ) '" ak for k '" t 
and, hence, A'(m-), 1)={at}. Consequently, (Zl(m-), 
1,jo-j) is empty unless at >jo-j. Thus making use of 
Eq. (2.38) we have 

( ( '1' .) {¢ form~jo, 
l!1 m-), ,)0-) = 

tI} for m > jo. 
(2.39) 

Combining Eq. (2.39) with the defining Eqs. (2.14) and 
(2.19), we obtain 

{ 
0 for m "" jo, 

CW,m,1,)0-j)= Fl0,m)= fa t(m) form>jo. (2.40) 

On the other hand 

~ fa (m)Cl(j, m - ak' n - 1, jo - j) 
"kEA' (m-J ,1) k 

=fa/m)ct(j, m- at, O,)o-j). (2.41) 

From Eq. (2.38) we have m - at =j. Thus, according to 
Eq. (2.22) 
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(2.42) 

Combining Eqs. (2.36), (2.37), (2.41), and (2.42), we 
obtain 

(2.43) 

Comparing Eqs. (2.40) and (2.43) we find that Eq. (2.35) 
holds for n = 1 provided that m > jo. 

(b) n > 2: For this case we will present the main steps 
in the derivation in succession, and justify the passages 
from one step to the other subsequently. Our starting 
point is the definition of the constrained combinatorics 
function of the first kind: 

cHi, m, n, j 0 - j) 

or 

.B F:(j, m) 
"EQ'l (m-J ,n,J o-J) 

o F:(j,m) 
"'""E/) (m-J, n) 

51)J o-J 

B B F:(j,m) 
akEA' (m-) ,n) Art:lE!J~k (m .. j ,n) 

51>io-i 

= 6 (f. (m) L 'ii
1 

f6 (Si~ 
akEA'(m-J,n) "k 4nqE/)::"(m-J,n)i=0' i 'l 

51)jo-J 

= _/1,6 (fa (m) ~ 
0kE::T1 (m .. i,n) '( 12 An_1,qE./) (m ... j-ak,n .. l) 

= B (!, (m) B 
akEA l(m ... i,n) Ok <I E!! 1 (m-J .. ok,n .. l,iO-i) 

F~_l 0, m - ak)) 

cl(j, m, n,jo-j) 

o fak(m)CW, m - ak, n- 1,jo - j). 
akEA '(m-i,n) 

(2. 44a) 

(2. 44b) 

(2. 44cl 

(2. 44d) 

(2. 44e) 

(2. 44f) 

(2. 44g) 

(2.45) 

Summing over the elements of!ll(m-j,n,jo-j) in Eq. 
(2. 44a) guarantees that the summation is performed only 
over those partitions, of (j, m) into n parts, whose first 
part i\ is greater than j 0 - j. A partition (nq) of the in
terval (j, m) can be represented by the vector ~nq(m - j) 
whose components are the parts of (nq). Hence the 
summation can be equivalently performed over the sub
set of vectors ~"q, belonging to 0 (m - j, n), whose first 
component is greater than jo - j, as in Eq. (2. 44b). 

The passage from Eq. (2. 44b) to Eq. (2. 44c) is al
lowed by Lemma 2 as expressed by Eqs. (2.27), (2.28), 
and (2.29), with ex = n. /)~k (m - j, n) is the subset of vec
tors belonging to /) (m - j, n) which have their nth com-
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ponent equal to ak • Since the constraint °1 > jo - j is on 
the first component of the vector Anq(m - j), and since 
we are considering the case n ~ 2, then the nth compo
nent on = ak is unconstrained. Thus the first summation, 
over the elements ofA'(m -j,n), in Eq. (2. 44c) is un
constrained. It is rather the summation over A". 
ED~k(m - j, n) that is constrained by 01> jv-j. 

Equation (2. 44d) is obtained by using the definition 
of the function Fn" as given by Eq. (2. 14) and remember
ing that we are dealing with the case n EN(m - j). 
Furthermore, fBn (sn) = fak (m) has been taken outside the 
second summation, since the nth component on of all 
vectors ~" entering the summation is ak , and since sn 

= III is the same for all partitions. 

The passage from Eq. (2. 44d) to Eq. (2. 44e) is made 
using Lemma 3, according to which there is a one-to
one correspondence between the partitions of 0, m) into 
n parts ending by ak, and the partitions of 0, m - ak) 
into n - 1 parts. It is worth noting that inside the second 
summation in Eqs. (2. 44d) and (2. 44e), the last com
ponent of the vectors A". and S". is not needed to evalu
ate the summonds. Thus, in going from a summation 
over n-dimensional vectors to one over (n - I)-dimen
sional vectors, by dropping the nth component, we do 
not lose any of the information ~ecessary to evaluate 
the sum. 

Since we are conSidering the case nEN(m -j), and 
since in Eq. (2. 44e), ak EA '(m - j, n), then according to 
Lemma 4, (n - 1) EN(m - j - ak ). Thus, using the defi
nition of the function F: as given by Eq. (2.14), and 
noting that Sn_l = 117 - ak for all terms in the second sum
mation of Eq. (2. 44e), we obtain Eq. (2.45f). 

The summation over the subset of vectors An_I,. whose 
first component is greater than jo - j, and which belong 
to 0 (m - j - ak , n - 1), is equivalent to a summation over 
the partitions (n - 1, q) belonging to Q 1 (m - j - ak , n - 1, 
jo - j). Thus Eq. (2.44f) can be rewritten as in Eq. 
(2.44g). Finally Eq. (2.45) is obtained by using the de
fining equation of the constrained combinatorics func
tions of the first kind, Eq. (2.19). 

Combining Eqs< (2.37) and (2.45), we find that Eq. 
(2.35) is satisfied for n ~ 2. This completes the proof 
of Theorem L 

Theorem 2: Given an interval 0, m), j'" jo, and a set 
A of partitioning subintervals, then 

C20, rn, jo - j) = :C fak (m)C20, m - ak , jo - j) 
akE

/1 
for m > jo. 

(2.46) 

Proof: In order to achieve a better understanding of 
the limitations of the theorem, we will treat separately 
the four cases m <j, 117 =j, j < m,,;: jo, and m > jo. 

W The case m <j: In this case C20, m,jo-j) =0 ac
cording to Eq. (2. 26b). Furthermore, since all ak's are 
greater than zero, the!!. m - ak < j for all ak EA. Conse
quently for all ak EA, Cz{j, m - ak, jo - j) = 0 also. Hence 
Eq. (2.46) is trivially satisfied. Thus, the theorem is 
also true for m <j. But, in this range of m, the theo
rem has no content and is of no interest. 
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(ii) The case m =j: Then m - '4 <j, and hence 
C20, m - ak,jo - j) = 0 for all ak EA according to Eq. 
(2. 26b). Thus, the right-hand side of Eq. (2,46) is zero. 
On the other hand, the left- hand side is equal to one 
according to Eq. (2,22). Hence, Eq. (2.46) does not 
hold for m =j. 

(iii) The case j < m'" jo: In this case m - j ~ jo - j, 
and hence there are no partitions of 0, m) with °1 > jo - j. 
Thus QI(m-j,n,jo-j)=(b for all n, and C2 (j,m,jo-j) 
= 0 according to the defining Eq. (2.20). On the other 
hand, there is no guarantee that m - j - a~ will not turn 
out to be zero, for some ak FA, thus leading to an inter
val which is partitionable into zero parts. This will 
permit bypassing the constraint 0 1 > j - jo and leads to 
a CZ(j,m-ak,jo-j)tO. Hence Eq. (2,46) is not guar
anteed to hold for j < m ~ jo. 

(iv) The case m > jo: Since j", jo, and m > jo, then 
m - j > 0, and no partitions of (j, m) into zero parts are 
possible. Hence in this case n? 1. 

(a) (m - j) ri/h : Then (j, rn) cannot be partitioned. That 
isA '(m - j, n) =(/J for any n; none of the elements ak of 
A belongs toA'(m-j,n). Thus, according to Lemma 4, 
0,111 - a") cannot be partitioned into n - 1 parts for any 
n. That i~ (111 - j - a") rili1 . Th~s according to Eq. (2.25) 
we have C2(j, 111, jo - j) = 0 and C20, 111 - ak , jo - j) = 0 for 
ak EA, and Eq. (2.46) is again trivially satisfied. 

(b) (m - j) ElY! : In this case Eq. (2.46) is not trivial. 
We will present the main steps in the proof in succession 
and give their justification afterwards: 

= B C}0, 117, n,jo - jJ (2. 47a) 
nEN<m-i) 

E B fa
k
(m)C}0,m-ak ,n-l,)o-jJ (2. 47b) 

nElllm-J> akEA 

= B i.Ja(m) B C~(j,m-ak,n-l,jo-j)\ (2. 47c) 
"kEN \' k nEN(m-i) J 

= LVak(m) B C}{j,m-ak,n-l,jo-j») 
akEN (n_1 )EN (m-j-"k) 

C20,m,)0-j) 

= 6 fa" (m)Cz0, m - ak,io - j). 
a"EA 

(2.47d) 

(2. 47e) 

The starting point Eq. (2. 47a) comes from the rela
tion between the constrained combinatorics functions of 
the first and second kind as given by Eq. (2.21). 

As we have already shown, for the case m > jo at hand, 
n ~ 1 and consequently the conditions for the validity of 
Theorem 1 are satisfied. Thus using expression (2.35) 
to replace ct0, m,n,jo-j) leads to Eq. (2. 47b). 

The summations ever ak EA and n E/v(m - j) are in
dependent of each other and can therefore be exchanged. 
Furthermore, fak (m) is independent of n and can be taken 
outside the summation over n. We thus obtain Eq. 
(2.47c). 

According to Lemma 4, (n - 1) EN (m - j - ak ) implies 
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that n EN(m - j), for ak Ell. Thus 

in; (n - 1) EN(m - j, ak)}c{n; n EN(m-j)} (2.48) 

and consequently 

.0 Cl(j,m-ak,n-l,jo-j) 
nE !V(m-i) 

.0 Ci(j,m-ak,n-l,jo-j) 
(n-l )E N (m-i 'Ok) 

+ ~ Cl(j,111-ak,n-l,jo-j)· 
(n _1 )r!A'(m_j -Ok) 

(2. 49a) 

nEN(m_j) 

According to Eq. (2. 24b) the summation over (n - 1) 
rfN(m-j-ak ), n""N(m-j) in Eq. (2.49a) adds up to 
zero. Hence 

L Cl(j,m-~,n-l,jo-j) 
nE I\'(m-i) 

2:: Ci(j,m-ak,n-l,jo-j), 
(n_l )E N (m-i -Ok) 

(2. 49b) 

substituting Eq. (2. 49b) in Eq. (2. 47c) we obtain Eq. 
(2. 47d). 

Finally by using Eq. (2.21) another time we arrive 
at Eq. (2. 47e). Thus Eq. (2.46) is satisfied. This com
pletes the proof of Theorem 2. 

III. LINEAR RECURSION RELATIONS 
A. Notation 

The general multiterm homogeneous linear recursion 
relation with nonconstant coefficients can be convenient
ly written as 

(3.1) 

where the mth term, bm , is related to N terms of lower 
rank, bm _ol ,"" bm- oN ' The numbers aj, ... , aN are posi
tive integers assumed to be ordered: 

(3.2) 

The coefficients entering the recursion relation (3.1) are 
arbitrary functions of the level 111. We have conveniently 
denoted the coefficient multiplying the term bm_

ak
, by 

fak (m). 

In general, Eq. (3.1) is valid for m > jo for some in
teger jo. Then the corresponding initial conditions are 
the values of biO' bio-1 ' ••• , bjo.l-aN which we take to be 

(3.3) 

B. General solution 

The problem at hand is to give an explicit expression 
for the coefficient bm , in terms of the arbitrary func
tions fak (m), and an arbitrary set of parameters {XI; i 
= 0, 1, 2, ... , aN - I} specifying arbitrary initial condi
tions. We will give the solution in the form of two 
theorems. 

Theorem 3: The constrained combinatorics function 
of the second kind C2(j, m, jo - j) is a solution of the re
cursion relation (3.1) satisfying the initial conditions 
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(3.4) 

provided that the rank differences ak are taken as parti
tioning subintervals and the coefficients lak (m) as the 
corresponding functions . 

Proof: LetA =={aj, a2, ... , aN}' Then Eq. (2.46) can be 
rewritten as 

N 

C2(j, m,jo - j) ==.0fa
k 
(m)C2(j, m - ak,jo - j), m > jo. 

k=1 

(3.5) 

If for a given j, included between jo and jo - aN + 1, we 
set 

bm ==C2(j,m,jo-j), j=jo,jo-l, ... ,jo-aN+l (3.6) 

in Eq. (3.5), we obtain Eq. (3.1), thus proving that 
~(j, m,jo-j) is a solution of the recursion relation for 
m c h. Furthermore, 

C2V,jo-i,jo-j)=6jo_i,i==6io_i,i for i?oO. (3.7) 

For i == jo - j, this is true due to Eq. (2.22). On the other 
hand, for i * jo - j the interval Vo - i, j) can neither be 
partitioned into zero parts, since jo - i - j * 0, nor can 
it be partitioned into n ?o 1 parts having 61 '. j 0 - j, since 
h-i-j""jo-j. Thus in this case~l(jo-i-j,n,jo-j) 
= ¢ for all n, and consequently C2V, jo - i, jo - j) == O. 
Combining Eqs. (3.6) and (3.7), we obtain Eq. (3.4). 
This completes the proof of Theorem 3. 

Theorem 4: The general solution of the recursion re
lation (3.1) satisfying the initial conditions (3.3) is given 
by 

aN _1 

bm =.0 AIC2(jo- i, m, il, m? jo- aN + 1. (3.8) 
i =0 

Proof: Since C2V, m, jo - j) is a particular solution of 
the recursion relation, for jo? j? jo - aN + 1, then by 
setting i = j 0 - j we find that C 2V 0 - i, m, i) is a solution 
of the recursion relation for 0 ~ i ~ aN - 1. Furthermore, 
the recursion relation is linear; hence bm as given by 
Eq. (3.8) is also a solution. On the other hand, from 
Eq. (3.8), we have 

aN-l 

bj -i== 6 A;.C2(jo-i ' ,jo-i,i') 
o ; '=0 

jo-aN·l 

= B Xj _j.C2V I ,jo-i,jo-j'), 
j'=}o 0 

(3.9) 

where we have made the change of variable j '= jo - i'. 
From Eqs. (3.7) and (3.9) we obtain, for 0 ~ i ~ aN - 1, 

This completes the proof of the theorem. 

The notation used for the partitioning of the interval 
V, m) is shown in Fig. 3. 

IV, CONCLUSION 

The general solution of homogeneous linear recursion 
relations has been presented in terms of functionals 
which we call constrained combinatorics functions of 
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r 8, I ~srar8.-r"1 
L J I I I I I I FIG. 3. Notation for the par-Iii Ot 0, 0, OJ CIt tition of an interval (j,m) into 

]01 j j j ~, parts, subject to the condition 
j , , ' 51 >jo, or equivalently lil >i. 
SO S, 50 S. s. s. s. 

the second kind. The practical usefulness of such solu
tions will increase as our understanding of the prop
erties and interrelations of these functionals is 
improved. 

The main results obtained can be summarized as 
follows: Given the linear recursion relation 

N 

bm=.0fak(m)bm_at' m>jo, 
k=1 

with the initial conditions 

b io-I = AI, i = 0, 1, ... , aN - 1. 

The general solution is 
aN- l 

bm = 6 AIC2(jO - i, m, i), 
1=0 

where C2(jo - i, m, i) is constructed as follows: 

(4.1) 

(4.2) 

(4.3) 

(i) Let j = jo - i and construct the setA ={all a2, ••. , aN}' 

(ii) Consider all partitions (nq) of the interval (j, m) 
into parts 0, belong toA, subject to the condition fit> i. 

(iii) Corresponding to each (nq) partition (°1, 02, .•• , 
On) construct the vector Snq(j, m} = (so, SI' S2' ••• , sn) 
whose components are given by 

181 

so=j, Sp=j+t 0" p"?-l. 
1=1 
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(4.4) 

(iv) Corresponding to each (nq) partition construct 
the functional 

n 

F~(j, m) = n f6,(s,). (4.5) 
1=1 

(v) The constrained combinatorics function of the 
second kind is then given by the sum over all functions 
corresponding to partitions of (j, m) subject to the con
straint 01 > i or equivalently SI > jo, 

(4.6) 
n 

Finally, 

(4.7) 

*Supported in part by the National Research Council of Canada. 
tPresent address: Department of Physics and Astronomy, 
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4Henceforth we will use the word "parts" instead of the techni
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5"Partitioning subinterval" is more expressive for our purpose 
than the word summond. 

6This is actually a functional rather than a function. 
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On integral relations for invariants constructed from three 
Riemann tensors and their applications in quantum gravity 
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The lowest order quantum corrections to pure gravitation are finite because there exists an integral 
relation between products of two Riemann tensors (the Gauss-Bonnet theorem). In this article several 
algebraic and integral relations are determined between products of three Riemann tensors in four- and six
dimensional spacetime. In both cases. one is left with only one invariant when R!'v = O. viz .• 

S( - g)1I2(Ra/l!'v R !'vpuRp.,. all). 

It is explicitly shown that this invariant does not vanish. even when Rl'v = O. Consequently. the two-loop 
quantum corrections to pure gravitation will only be finite if, due to miraculous cancellation. the coefficient 
of this invariant vanishes. 

I. INTRODUCTION 

Integral relations for products of Riemann tensors 
play an important role in quantum gravity because of 
the following theorem: 

Theorem l
: the leading k-Ioop divergences of the 

quantum S matrix for pure Einstein gravitation in n 
dimensions are of the form 

G
k

-
l f Sdiv(k-Ioop n-dim) = an x(- g)l/2 A (x) 

'(v_n)k , 

where G is Newton's constant, (v - n) the parameter 
which regularizes divergences in quantum field theory 
according to the dimensional regularization scheme, 2 

and 

(i) A (x) is a local scalar constructed from fields 
g"v(x). 

(ii) A(x) does not depend on G. 

(iii) The fields g"v(x) in A(x) satisfy RJ"v(g) =: O. 

(iv) A(x) is constructed from (in+ k -l-1) Riemann 
tensors and 2l covariant derivatives D". 

In particular, no expressions of the form R- 1 or 
(D "D")"1 are allowed. The factor Gk- l is due to the facts 
that the Einstein action is proportional to G- l and that 
the graviton field hJ"v is related to the metric g"v by 
g"v=T)"v+ cG l

/
2h"v (where c is a constant) because any 

quantum boson field has the dimension of an inverse 
mass. From these two facts it follows that propagators 
are independent of G, while an m-point vertex is pro
portional to Gm I2-1. From these observations one easily 
proves that the leading divergence of a k-Ioop diagram, 
expressed as a function of gJ")x), depends on G as 
indicated. Finally, since the S matrix is dimensionless, 
A can only depend on the number of Riemann tensors 
indicated. The theorem says nothing about nonleading 
divergences, nor will we. 

The simplest application of the theorem is the case 
of the one-loop diagrams (i. e., the first true quantum 
corrections) in pure Einstein gravitation in normal four
dimensional spacetime. 3,4 The most general form of 

A (x) is according to (i) and (iv) given by 

(1) 

The Gauss - Bonnet integral identity for arbitrary g" v' 

(2) 

can be used to transform the last term in Eq. (1) into 
the other two as follows. For nonsingular h"v(x) which 
vanish suffiCiently fast at infinity, one may omit the 6 
in Eq. (2) and one obtains, by expanding the product of 
the two E symbols into Kronecker delta functions, 

.f ~x(_g)1/2(R"v"aR"v",a_4R"fl"v+R2)=0. (3) 

Finally, with R "v =: 0 according to (iii), it follows that 
A =0. One concludes that the lowest order quantum 
corrections to the S matrix of pure Einstein gravitation 
are finite. Actually, the restriction R"v =0 raises some 
problems about the validity of deducing Eq. (3) from Eq. 
(2), which we discuss in the next section. 

In this article we consider the cases of two-loop 
divergences in four dimensions (n = 4, k = 2) and one
loop divergences in six dimensions (n =: 6, k =: 1). 
Elsewhere the results obtained here will be used to 
discuss the finiteness of the one but lowest order (two
loop) quantum corrections to the pure gravitational 5 
matrix in four dimensions. 

II. PRODUCTS OF THREE RIEMANN TENSORS 

In both cases (n=4, k=2 and 17=6, k=1) the scalar 
A in the theorem is obtained by contracting three 
Riemann tensors in all possible ways. Many contrac
tions vanish or are equal due to the symmetries of the 
Riemann tensor 

For example, denoting a contraction graphically by a 
bar, one proves easily from the cyclic relation 

(4) 

R R -1-R R (5) 
YOI ~"I a - 2 yO I [ I I "a' 

Using these relations, one finds that there are at most 
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two independent invariants which we display for clarity 
again in graphical notation 

A1=(RII R R II). 
~~ (6) 

A2 =R I R J J R I . 
I IL..J L-Jj 1 

For example, the third invariant 

As=R, [ f ~ II ~ I I, (7) 

is related to the previous two invariants by As = tAl + A 2 • 

Terms containing derivatives are of the form RDDR and 
can be transformed into A1 and A2 after partial integra
tion and use of the Bianchi identities when Rl'v = O. 

In six-dimensional spacetime there exists, however, 
an integral relation between Al and A 2, as we now 
discuss. The Gauss-Bonnet theorem in 2n dimensions 
for arbitrary gl'v(x) reads4 

15 f rPnx(_ g)l /2(R 1'11'2 ." R 1'2n-11'2nEa1'" a2n 
a1a2 '"2n-1 a2" (8) 

x EI'P " 1'2.) = O. 

Upon expanding the E tensors into 15 tensors and putting 
R I' v = 0 as in the introduction, one obtains the relation 

J £i6x(_g)1/2(A1 +2A 2)=0. (9) 

Actually, this relation should be read in the context 
of its applications to quantum field theory. When Rl'v=O, 
one expects gl'v(x) to develop singularities; moreover, 
it is conceivable that gl')x) does not fall off in every 
direction fast enough for the integral in Eq. (9) to 
exist. In such cases, one cannot deduce Eq. (9) from 
Eq. (8) by considering successive variations which 
connect the given metric gl'v(x) with the vacuum 111'v' 
However, in applications to quantum gravity one should 
interpret Eq. (9) in a perturbative sense. Each field 
gl'v(x) represents the sum of all tree graphs of conven
tional Einstein gravitation with phYSical momenta 
(p2 = 0) and physical polarizations (E".p1' = EI''' = 0) at the 
end pOints. 4 This "on-shell" condition is formally 
equivalent to R"v=O; the tree graphs are in fact the 
perturbative solution of the differential equation Rl'v = O. 
ConSidering a given tree diagram with N external legs 
leads to a divergent integral in Eq. (9) with the diver
gence of the form 154( L f=lP/), which (as needed) ex
presses energy-momentum conservation. The impor
tant result now is that the sum of all graphs with N 
external legs contained in Eq. (9) vanishes "on shell. " 
One can go, formally at least, from Eq. (8) to Eq. (9) 
because in this perturbation expansion there are no 
singularities nor does the nonconvergence of Eq. (9) 
present a problem (it actually is needed as we dis
cussed). 

One concludes, therefore, that in six dimensions the 
most general form of the one-loop divergences of the 
S matrix is simply given by 

Sdlv (I-loop, 6 dim) = Q's(lJ - 6)-1 f £i6x(- g)1/2A 1(x), 

(10) 

where the constant Q's can be determined by explicitly 
evaluating all tree diagrams with a given number of 
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external legs and with one (and only one) vertex given by 
A1(x). 

In four dimensions, the same symmetry arguments as 
before show that the leading two-loop divergences are 
a linear combination of A1 and A2 in Eq. (6). But here 
an algebraic relation exists between Al and A2 when 
R"v=O, which is best derived from spinor formalism. 5.S 

Each Lorentz index JJ. can be decomposed into the direct 
product of two spinor indices (S04=SU2 XSU2 ), which 
transform independently. From now on we decompose 
Lorentz indices as Q' = (a, ~), {3 = (b, !!.), etc. Hence 

JJ.=m0m, JJ.==1,4, m=I,2, m=1,2. (11) 

Moreover, we choose a local inertial frame at the point 
considered. Any 2 x 2 antisymmetric tensor tab is 
proportional to Eab where Ell = e2 2 = 0, and E12 = - e2 l = 1. 
With this observation, the antisymmetries of the Riemann 
tensor R a8P<1 in (Q'{3) and (pa) lead to the decomposition 

(12) 

where A, B, C and D are symmetric in their first two 
and last two indices. From Ra/lPu=R.uaB it follows that 
A and D are symmetric (in the sense that A ab •TS =A,.s,ab) 
while BT = C. The ten Einstein equations Eas E!I ~R aB.o = 0 
yield the ten relations7 

B + C T == 0, (A ll • 22 -A12 ,12) + (Dll •22 - D12 •l2 ) = 0 

while the cyclic identity Ra[BPol provides one more 
relation 

(A ll •22 -A 12,12) - (D ll ,22 - D12 •12 ) = O. (13) 

It follows that B == C = 0 and that A and D are symmetric 
and traceless (in the sense that EarAab,rs = 0) 3 x 3 matri
ces [combining the two indices (ab) into one index I with 
values 1, 2, 3]. As expected, one is left with ten inde
pendent components for the Riemann tensor under the 
restriction Rl'v==O. 

One concludes that the only nonvanishing scalars are 
given by trA3 and trDs. Terms like trAtrD2 vanish be
cause trA does, while tr(A 2D) = tr(AD2) = 0 as one may 
verify explicitly, using Eq. (12). In particular, one 
finds that A2 vanishes, while Al = tr(A 3 + D3). The in
variant tr(A 3 _ D3 ) is proportional to El'vPO RpoaBR a8K~ 
RK~I'V and cannot occur in the leading divergences since 
it breaks parity. For the leading divergences of the 
two-loop corrections of the gravitational S matrix in 
four dimensions, one finds thus 

Sdlv (2-loop, 4 dim) = Q'P(lJ - 4f2 J d'x( - g)l/2A 1(x), 

(14) 

where the constant Q'4 can be determined by calculating 
all tree graphs with a given number of external lines and 
one and only one vertex given by A 1(x). 

III. DO EXTRA INTEGRAL RELATIONS EXIST 
WHEN RJ.LV = O? 

The question now arises whether the integrals in (10) 
and (14) themselves vanish (as opposed to their coeffi
cients Q's and Q'4' ) It is believed that the only integral 
identities for scalars build from arbitrary gl'v(x) are 
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~"f" x ~ >:< ~~ 
pl,EI p2,11!'2 

(a) (b) 

FIG. 1. Pole diagram contributing to the Born amplitude .• 
denotes the vertex E 3 in Eq. (17) and. denotes the vertex V3 in 
Eq. (18a). 

the Gauss-Bonnet identities of Eq. (S). Not much seems 
to be known about similar integral relations under the 
re striction R .. v = 0, presumably because, as noted 
before, such integrals do not exist in the classical 
sense. The question therefore is how to decide whether 
the integral of A1(x) vanishes. One possibility would 
be to take an exact, everywhere regular solution of 
Einstein's equations R ... v= 0, to substitute it into A1(x) 
and to integrate (perhaps on a computer) the result
hoping that the integral exists. No such solution is 
known to us. Instead, we settled the question by dOing 
precisely what the integrals in (10) and (14) are supposed 
to mean. That is, we replaced each field g ... Jx) by a sum 
of tree graphs and considered all graphs with a particu
lar number of external legs. The integrals are then 
trivial, each yielding the same factor 1)4(L;Pi)' and the 
question therefore is whether the sum of the finite 
remainders vanish. 

Due to kinematical degeneracy in the case of three 
external legs, both integrals vanish, as the reader may 
easily verify. We consider therefore the next case: all 
tree diagrams with four external legs with (i) one vertex, 
obtained from A1(x) by expanding g ... v='I) ... v+Kh ... v (with 
k2 = 327TG) and expanding A1(x) into powers of h ... v ' 

(ii) all other vertices obtained by expanding the Einstein 
action in terms of h .. v , and (iii) the propagators being 
the usual propagators of quantum gravity. Denoting by 
EN a N-point vertex in Einstein theory and by VN the 
N-point vertices provided by (_g)l/Z A1(x), we have 
contracting all repeated indices with 'I) .. v 

L E = - 2K-Z(- g)l/zg"'BgVaR .. vaB' R" vO<B = aar~B - "', (15) 

p"v.pa=~ (T)"p'l)va+'I) ... a'l)vp 

- n ~ 2 'I) ... vT)p~k-Z, n = dim spacetime, (16) 

In this expression only the field H is to be contracted 
when E3 is used to construct the diagrams of Fig. 1; 
the fields h"8 are already taken on-shell: 

X (haB •pa - haa •PB )(hB ... ,(l!V) , (lSa) 

V4 = - ~f{4hvr(ha .... aT - ha T.a ,,)(haa•pa - haOl •PB ) 

x (h ... a•vp - hva .... p - h ... p.va + hvp .... a) 

+ 3K4(h8 .... av - hBv.a ... )(haa.ap - hp8 •aa - h aa •P8 + hap•aB ) 
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x [- th ... T(hTa•vp - hva •TP ) + i(hvT•a + hTa •v - hva,T) 

X(hIJ.P.T- hT".p - hTP,IJ.))· (lSb) 

Since in tree graphs the dependence on the gauge drops 
out, one can choose the propagator in any gauge; the 
Feynman gauge in Eq. (16) is the simplest. 

I t is now a straightforward matter to calculate the 
diagrams of Figs. 1 and 2. The calculations were per
formed on a computer, using an algebraic manipulation 
program. 8 We start with the case of four-dimensional 
spacetime. The diagram in Fig. 2 is determined 
entirely by the contact term V4 alone, and since all four 
external legs are on-shell, we have omitted in Eq. (lSb) 
all terms which vanish on-shell. The diagrams in Fig. 1 
contain one vertex V3 , one vertex E 3 , and one propaga
tor P. The polarization tensors E~v (p) of external gravi
tons with helicities A = ± 2 are given by 

where <l(p) are the polarization tensors for photons 
with helicities \ = ±1. 

(19) 

The results are given in the table and we proceed to 
interpret them physically. Using parity invariance, 
time reversal invariance, crossing symmetry, and 
Bose symmetry, one finds that there are only three 
independent amplitudes F(A3A4 ;A 1AZ) for the process 
AV \2 - A3• \4 

F(2, 2;2, 2), F(2, 2;2, -2), F(2, 2;-2, -2). (20) 

In particular F(2, -2;2, -2) =F(2, 2;2,2) due to (5, It) 
crossing. The results in I and II of Table I satisfy this 
criterion and provide a useful check. Note that only the 
total amplitude satisfies this result and not the seagull 
or pole graphs separately. This is due to the fact that 
only the total amplitude is gauge invariant. A second 
check is gravitational gauge invariance: Replacing any 
polarization tensor E ... v by p ... should give zero. The 
result in V satisfies also this criterion, which checks 
the relative signs and constants between V3 , E 3 , and V4 • 

The amplitude F(2, -2;2, 2) in III is symmetric under all 
three crossing operations and should therefore be a 
symmetric function of s, t, and u. It is indeed. The 
same result holds for F(2, 2;-2, -2) in IV. Incidentally, 
the nonvanishing of III shows that in massless boson 
scattering, bosons need not retain their helicities. In 
Einstein theory, gravitons retain their helicities in 
Born approximation, but in Ref. 9 it was noted that this 
is an accident, and not true in general, as verified by 
III. 

In Einstein gravitation kinematical singularities 
determine the Born amplitudes completely, due to the 
high spin of the gravitons. In our case the vertices V3 
and V4 have two factors K more than the vertices E3 

and E 4 ; hence we expect a less severe restriction. 
Using the general considerations of Ref. 9, one finds 

(g1 

FIG. 2. Seagull diagram con
tributing to the Born ampli
tudes. _ denotes the vertex V4 
in Eq. (lSb). 
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T ABLE I. Results for tree graphs in Figs. 1 and 2 in four dimension (K ~ 1). 

II 

III 

IV 

V 

Helicities 
considered 

F(2, 2; 2,2) 

F(2, -2; 2, -2) 

F(2, 2; 2, - 2) 

F(2, 2;-2, -2) 

F(2, 2;-2, -2) 

Nonzero pole graphs of Fig. 1 

a + b = -48iE8(1 + 3z2) 

e+ f~ - 6iE8(1 + z)5 

{

c+ d= 3iE8 (z - 3) (1- Z2)2 

e + f= 3iE8(- Z - 3) (1- z2)2 

l
a + b ~ - 48iE8 (1 + 3z2) 

C + d = - 6iE8 (1 - z) 5 

e+ f=- 6iE8(1 + Z)5 

Seagull graph of Fig. 2 

g= 12iE6(1 + 3z2) 

g= - 3iE6(1 + z)4 

g= _ 3iE6(1- Z2)2 

Total 
amplitude 

o 
o 

,f!l istu 
4 

o 
with E:~v = p~p~ l

a + b = 48iEl0 (Z2 - 1) 

c+ d= 6iE10(_1 + 3z - 2Z2 _ 2z3+ 3z4 _ Z5) 

e+ f= 6iEl0(_1_ 3z - 2z2+ 2z3+ 3z4 +z5) 

t = - 2E2 (1 - z) , u = - 2E2 (1 + z) 

. (a+b c+d e+f ) Total amphtude = K6 -s- +-t -+-U+ g 

that the helicity amplitudes of four massless bosons 
are given by 

F(A
3

, A
4
;A1' A2)=(sfurluIX+I"1/2tl X-I"1/2 S I CXiI / 2ct> 

(21 ) 

where s, t, and u are the Mandelstam invariants and 
s + t + U = O. The first factor is due to the three poles 
in the exchange graphs, the u and l factors give the 
singularities in the scattering angles, the s factors 
determine the singularities in the CM energy, while 
the remaining function ct> is a polynomial in s, t, and u 
of that degree which makes F dimensionless. Since in 
our case each F is proportional to G3

, one has 

F(2, 2;2, 2)= (G 3/stU)S4 cDA , ct>A =a~?, 

F(2, 2;2, -2) = (G 3
/ stu)(ut)2s2 ct>B = b~o, 

F(2, 2;-2, -2) = (G 3/slu)ct>c. (22) 

tPc = c~s + d(~3)2 + e(~2)3, 

~n = sn + tn + un. 

We see from the table that these constraints are, 
indeed, satisfied. In particular F(2, 2;2, -2) is com
pletely determined up to the over-all constant b = 3/8i. 

In the case of six dimensional spacetime the propaga
tor acquires an extra term m I"v11 Pa' which describes 
scalar exchange. However, we found by explicit 
calculation that the n-dependence of the propagator 
through 2/n - 2 is completely eliminated by the n-de
pendence of the contractions2 

(23) 

so that the helicity amplitudes in four and six dimensions 
are equal. In fact, embedding four-dimensional space
time into n-dimensional spacetime, the helicity ampli
tudes are n-independent for any n, since contractions 
of Eq. (23) at the E3 vertex eliminate the n dependence 
of the propagator, while contractions at the V3 vertex 
are n-independent. 
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One concludes that also in six-dimensional spacetime 
there are nonvanishing helicity amplitudes with one 
vertex A1(x). 

IV. CONCLUSIONS 

The leading divergences of the gravitational S matrix 
in the absence of matter are in both cases of one-loop 
corrections in six-dimensional spacetime and two-loop 
corrections in four-dimensional spacetime proportional 
to the spacetime integral of 

AL = (_g)1/2A 1(x)= (_g)1/2(R",/aR p / vRI"v o<S). 

This result was obtained from simple tensor algebra, 
together with the Gauss-Bonnet integral identity in six 
dimensions and an identity derived from spinor formal
ism in four dimensions. 

By explicitly calculating the four-point on-shell Born 
graphs with one vertex given by AL and (in the case 
of one-pole diagrams) a second vertex given by the 
Einstein action, we showed that some helicity ampli
tudes vanish, while some do not. The results satisfy 
the checks of gauge invariance and kinematical singu
larities. This means that the integral of AL over space
time does not vanish, so that no extra integral relation 
exists, even when RI"v = O. 

These results mean that in quantum gravity calcula
tions the coefficients of these nonrenormalizable diver
gences have to vanish if the S matrix is to be finite. 
For the one-loop divergences of the S matrix in six 
dimensions the coefficient AL [denoted in Eq. (10) by 
as] has beE':n calculated and does not vanish. 8 The 
results of this paper mean that there is no easy way to 
conclude that the two-loop corrections in four dimen
sions are finite, but that instead direct hard work is 
needed to decide whether the coefficient of AL [denoted 
by Q 4 Eq. (14)] vanishes. 
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Comment on "New Jacobian theta functions and the 
evaluation of lattice sums" by I.J. Zucker [J. Math. 
Phys. 16, 2189 (1975)] 

Murray Geller* 

Jet Propulsion Laboratory, Pasadena, California 
(Received 18 August 1976) 

In a recent article by Zucker1 pertaining to the eval
uation of lattice sums, the q series 

8
5
=2q1/4(1 _q2 _qS +q12 +lo • •• ), (1) 

was derived such that 

(2) 

where 8 2 and 84 are two of the Jacobian theta functions 
with zero argument, 82 (0,q) and 8 4 (0,q), respectively. 
The comment was made that the series 85 does not 
appear to have been considered by Jacobi. It is clear 
that, although 85 cannot be represented in terms of a 
linear combination of Jacobian theta functions of zero 
argument, it is easily seen that 

(3) 

Hence, the full array of addition and multiplication 
formulas can be utilized to yield results involving 85 and 
the remaining theta functions, several examples of 
which are 

and 

8
5 

84(q4) = 82 84(q2) 

= ~82(q1/2) 8
5
(q1/2), 

~=283 84 (8; - 8!) 

= 48 3 84 8~(q2), 

(4a) 

(4b) 

(4c) 

2.1/3 8;1/3 8~=38;(q3) 8
5
(q1/3) _ 8;(q1/3) 8

5
(q3). (4d) 

We note that Tolke2 had earlier recognized that of the 
ten products of theta functions, 8 i(Z, q) 8 j(z, q), for 
i ~ j ~ 4, only two were unable to be expressed in terms 
of a linear combination of theta functions with the argu-

ment nz, viz., 81(z,q) 83(z,q) and 82(z,q)84(z,q). This 
led him to define the quantities 

8S(z,q) =282(z,q) 84(Z,q)/8~/2 8~/2 8!/z, 

from which we readily recognize that 

(5a) 

(5b) 

12 8 5Z ucker = 8s (0, q2)Tolke' (6) 

In addition, Tolke presents many formulas relating 85 
and 8s to the four Jacobian theta functions. 

Finally, the series 85 of (1) can be summed analyti-
cally for selected values of the argument q: 

q=exp(-1T/2), 

85 = r(I/4)/21 14 r/4 = 1. 291 996007· .. , (7a) 

q=exp(-1T12/2), (7b) 

85 = (12=""1)3/8 r(1/8)/(21Tr(I/4) P 12 = 1. 134229386· .. 

q = exp(- 1Tv'3/2), (7c) 

85 = 31 1 8(r(1 /3) j3 12 /2 2
/

3 1T = 1. 008 666 841 ... , 

Many other analytical summations for 85 can be obtained 
by application of the multiplication formulas for theta 
functions. 

*This paper presents the results of one phase of research 
carried out at the Jet Propulsion Laboratory, California In
stitute of Technology, under Contract #NAS7-100, sponsored 
by the National Aeronautics and Space Administration. 
lI.J. Zucker, J. Math. Phys. 16, 2189 (1975). 
2F. Tolke, Praktische Funktionenlehre (Springer-Verlag, 
Berlin, 1966), Vol. 2, Sec. 16. 
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ERRATA 

Erratum: The spectrum of the Liouville-von Neumann 
operator [J. Math. Phys. 17, 57 (1976)] 

Herbert Spohn 

Fachbereich Physik der Universitiit Munchen, Munchen, Germany 
(Received 4 August 1976) 

(1) In Theorem 1, the first, the third, and the fourth 
set on the right side of the equalities should in each case 
be replaced by the closure of the same set. a(Lij) = {x - yl XE a(H i ), yE a(H j )}. 

(2) In the proof of Theorem 1, (a) should be replaced (3) I am grateful to J. Kyle for pointing out the error. 
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